Se considera un sir \( (a_n)_{n\ge 1} \) de numere reale definit prin \( a_{n+1}=\frac{(1+a_n)}{(1+a_n^2)} \), pentru orice \( n\in \mathbb{N}^* \). Aratati ca daca \( a_1\in (0,2) \), atunci \( |a_{n+1}-1|\le \frac{1}{2^n} \), pentru orice \( n\in \mathbb{N}^* \).
Lucian Dragomir, Otelu-Rosu
Problema 4, lista scurta 2009
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
Problema 4, lista scurta 2009
. A snake that slithers on the ground can only dream of flying through the air.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)