Inegalitatea Archbold

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Inegalitatea Archbold

Post by Laurian Filip »

Fie \( a_i > 0 \), \( i=\overline{1,n} \) astfel incat
\( \sum_{k=1}^n \frac{1}{a_k}=1 \)

Demonstrati ca \( \forall z_i \in \mathbb{C} \), \( i=\overline{1,n} \)
\( \sum_{k=1}^na_k det{z_k^2} \geq det{ \sum_{k=1}^n z_k}^2 \)
Last edited by Laurian Filip on Mon Apr 06, 2009 10:10 pm, edited 1 time in total.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Re: inegalitatea archbold

Post by Beniamin Bogosel »

\( \sum_{k=1}^na_k det{z_k^2}=\sum_{k=1}^na_k det{z_k^2} \cdot \sum_{i=1}^n \frac{1}{a_i}\geq (\sum_{k=1}^n |z_k|)^2\geq | \sum_{k=1}^n z_k|^2 \)

Am aplicat un CBS si inegalitatea modulului. :)
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

\( |\sum_{k=1}^n z_k|^2\le (\sum_{k=1}^n |z_k|)^2=(\sum_{k=1}^n\frac{1}{\sqrt{a_k}}\sqrt{a_k}|z_k|)^2\le\sum_{k=1}^n (\frac{1}{\sqrt{a_k}})^2\cdot\sum_{k=1}^n (\sqrt{a_k}|z_k|)^2=\sum_{k=1}^n a_k|z_k|^2 \).
Post Reply

Return to “Clasa a X-a”