Fie \( a_i > 0 \), \( i=\overline{1,n} \) astfel incat
\( \sum_{k=1}^n \frac{1}{a_k}=1 \)
Demonstrati ca \( \forall z_i \in \mathbb{C} \), \( i=\overline{1,n} \)
\( \sum_{k=1}^na_k det{z_k^2} \geq det{ \sum_{k=1}^n z_k}^2 \)
Inegalitatea Archbold
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
Inegalitatea Archbold
Last edited by Laurian Filip on Mon Apr 06, 2009 10:10 pm, edited 1 time in total.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Re: inegalitatea archbold
\( \sum_{k=1}^na_k det{z_k^2}=\sum_{k=1}^na_k det{z_k^2} \cdot \sum_{i=1}^n \frac{1}{a_i}\geq (\sum_{k=1}^n |z_k|)^2\geq | \sum_{k=1}^n z_k|^2 \)
Am aplicat un CBS si inegalitatea modulului.
Am aplicat un CBS si inegalitatea modulului.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
- BogdanCNFB
- Thales
- Posts: 121
- Joined: Wed May 07, 2008 4:29 pm
- Location: Craiova