Limita a doua siruri date prin recurenta

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Limita a doua siruri date prin recurenta

Post by Laurentiu Tucaa »

Fie \( (x_n)_n \) si \( (y_n)_n \) si \( 0<x_0<y_0 \) definite astfel \(
x_{n+1}=\frac{x_n+y_n}{2},\ y_{n+1}=sqrt{x_{n+1}y_n} \)
. Sa se determine limitele celor doua siruri.
Theodor Munteanu
Pitagora
Posts: 98
Joined: Tue May 06, 2008 5:46 pm
Location: Sighetu Marmatiei

Re: Limita a doua siruri date prin recurenta

Post by Theodor Munteanu »

\(
x_1 < y_1 ,si{\rm prin inductie demonstram ca x}_{\rm n} < y_n ; \)
\\
\( y_1 = \sqrt {x_1 y_0 } = \sqrt {\frac{{x_0 + y_0 }}{2}*y_0 } < y_0 {\rm si prin inductie si cateva calcule y}_{\rm n} < y_{n - 1} ; \\ \)
\( {\rm prin inductie demonstram ca x}_{\rm n} > x_{n - 1} ; \\ \)
\( Obtinem\;{\rm lantul 0 < x}_{\rm 0} < x_1 < ... < x_n < y_n < .... < y_{0{\rm }} deci{\rm sirurile sunt convergente } \\ \)
\( {\rm teorema lui Weierstrass;x = {{\rm lim}}\limits_{{\rm n} \to \infty } x_n ;y = {{\rm lim}}\limits_{{\rm n} \to \infty } y_n {\rm si trecand la limita in relatia de } \\ \)
\( {\rm recurenta obtinem x = y}{\rm .} \\ \)
La inceput a fost numarul. El este stapanul universului.
enescu
Pitagora
Posts: 60
Joined: Tue May 20, 2008 10:08 pm

Post by enescu »

A se vedea si solutia din cartea lui Engel (cap. Invarianti) in care se arata ca limita comuna a celor doua siruri este \( \frac{\sqrt{y_0^2-x_0^2}}{\arccos{\frac{x_0}{y_0}}} \)
Bogdan Enescu
Post Reply

Return to “Analiza matematica”