Concursul Interjudetean "MOISIL", Satu-Mare, 2009

Moderators: Bogdan Posa, Laurian Filip

Post Reply
mihai miculita
Pitagora
Posts: 93
Joined: Mon Nov 12, 2007 7:51 pm
Location: Oradea, Romania

Concursul Interjudetean "MOISIL", Satu-Mare, 2009

Post by mihai miculita »

Problema 1:
a) Fie \( x,y,z\in\mathbb{R} \), astfel incat: xy+yz+xz=1.
Demonstrati ca: \( \frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}=\frac{2}{(x+y)(y+z)(z+x)} \)
b) Folosind eventual rezultatul de la a), demonstrati ca daca a, b, c sunt numere reale pozitive astfel incat: \( a+b+c=abc \),
atunci: \( \frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le \frac{abc}{4} \). (Maria Mihet).

Problema 2:
a) Determinati toate functiile \( f:\mathbb{R}\rightarrow\mathbb{R} \) pentru care:
\( 3f(x)f(y)-5f(x)+7f(y)+4=xy \), oricare ar fi \( x,y\in\mathbb{R} \). (Vasile Berinde)
b) Fie \( f:\mathbb{R}\rightarrow\mathbb{R}, f(x)=\left\{\begin{array}{ccc} x=4,\ x<2m \\
3x-2, \ x\ge 2m \end{array} ; m\in\mathbb{R}. \)

Sa se afle valorile lui \( m\in\mathbb{R} \) pentru care:
\( f(2m-1)+f(m^2+m+1)+f(2m+2)=mf(2m-2) \). (Vasile Serdean si Cristian Pop)

Problema 3:
Fie semidreptele necoplanare (OA, (OB, (OC, astfel incat sa avem: \( m(\angle{AOB})=m(\angle{BOC})=m(\angle{COA})=60^0 \).
Stiind ca AO=6 cm, calculati lungimea segmentului (AO'), unde O' este proiectia punctului A pe planul (OBC).
(Magda Visovan, Supliment GM/ianuarie 2009)

Problema 4:
Fie ABCDA'B'C'D' un cub. Cubul este patat cu Cola pe mai putin de jumatate din suprafata totala.
Aratati ca exista doua puncte de pe suprafata cubului, care sunt coliniare cu centrul cubului, care nu sunt patate cu Cola.
(Concurs "Recreatii matematice")
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Re: Concursul Interjudetean "MOISIL", Satu_mare, 2

Post by Claudiu Mindrila »

mihai miculita wrote:Problema 1:
a). Fie \( x,y,z\in\mathbb{R} \), astfel incat: xy+yz+xz=1.
Demonstrati ca: \( \frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}=\frac{2}{(x+y)(y+z)(z+x)} \)
b). Folosind eventual rezultatul de la a), demonstrati ca daca a, b, c sunt numere reale pozitive astfel incat: \( a+b+c=abc \),
atunci: \( \frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le \frac{abc}{4} \). (Maria Mihet).
Solutie.

a) Avem \( \sum\frac{x}{x^{2}+1}=\sum\frac{x}{x^{2}+xy+yz+zx}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}=\sum\frac{x\left(y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\sum xy}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)} \)

b) Avem ca \( \sum\frac{a}{a^{2}+1}=\sum\frac{a}{a^{2}+\frac{abc}{a+b+c}}=\sum\frac{a+b+c}{a\left(a+b+c\right)+bc}=\left(a+b+c\right)\sum\frac{1}{\left(a+b\right)\left(a+c\right)}=\left(a+b+c\right)\sum\frac{b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)} \).

Dar \( \left(a+b+c\right)\sum\frac{b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{2\left(a+b+c\right)^{2}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{2\left(a+b+c\right)^{2}}{2^{3}\sqrt{ab}\cdot\sqrt{bc}\cdot\sqrt{ca}}=\frac{2\left(a+b+c\right)^{2}}{8abc}=\frac{2a^{2}b^{2}c^{2}}{8abc}=\frac{abc}{4} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

1,b) Se noteaza \( x=\frac{1}{a} ,y=\frac{1}{b}, z=\frac{1}{c} \) si se aplica a).
Post Reply

Return to “Clasa a VIII-a”