Bacalaureat, siruri convergente la e

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Bacalaureat, siruri convergente la e

Post by Cezar Lupu »

Se considera sirurile \( (a_{n})_{n\geq 1} \) si \( (b_{n})_{n\geq 1} \), definite prin \( a_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\ldots +\frac{1}{n!} \) si \( b_{n}=a_{n}+\frac{1}{n!\cdot n} \). Sa se arate ca:

1) \( a_{n} \) este strict crescator si \( b_{n} \) este strict descrescator

2) Stiind ca \( \lim_{n\to\infty} a_{n}=e \) sa se calculeze \( \lim_{n\to\infty} b_{n} \).

3) \( a_{n+1}<e<b_{n} \).

4) \( \frac{1}{(n+1)!} < e-a_{n} <\frac{1}{n!\cdot n} \).

5) \( e \) este numar irational mai mic ca \( 3 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

1)simpla verificare de monotonie se calculeaza \( a_{n+1}-a_n si b_{n+1}-b_n \) si iese \( a_n s.c. si b_n s.d. \)
2)cum \( \lim_{n\to\infty} a_n=e=\lim_{n\to\infty} b_n= \lim_{n\to\infty} a_n+\frac {1}{nn!}=e+0=e \)
3)cum \( a_n \)converge crescator spre e si \( b_n \)converge descrescator spre e =>\( a_{n+1}<e<b_n \)
4)din 3) \( a_n+\frac{1}{(n+1)!}<e<a_n+\frac{1}{nn!} \)si scazand \( a_n \) se obtine concluzia
5)se demonstreaza mai simplu ca e este transcendent decat irational tinand cont de \( a_n \)pt care nu exista niciun polinom din Q[X] a.i. \( P(e)=0 \)si cum e este transcendent este automat irational
Post Reply

Return to “BACALAUREAT”