Ecuatie exponentiala cu functii trigonometrice

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
heman
Euclid
Posts: 39
Joined: Fri Sep 28, 2007 7:36 pm

Ecuatie exponentiala cu functii trigonometrice

Post by heman »

Rezolvati ecuatia \( 2^{tanx}+2^{cotx}=2cot2x. \)
User avatar
Wizzy
Euclid
Posts: 25
Joined: Sat Sep 29, 2007 11:20 pm
Location: Craiova

Post by Wizzy »

Cred ca acolo e \( 2^{tgx}-2^{ctgx} \)!
Notam \( tg x =a \). Cum \( tg 2x=\frac{2tg x}{1-tg^2 x } \), ecuatia se rescrie sub forma echivalenta

\( 2^a-2^{\frac{1}{a}}=\frac{1-a^2}{a}=\frac{1}{a}-a \),

echivalent cu

\( 2^a+a=2^{\frac{1}{a}}+\frac{1}{a}. \)

Daca luam functia \( f(x)=2^x+x \) avem ca \( f \) este injectiva.

Cum ecuatia este echivalenta cu \( f(a)=f(\frac{1}{a}) \) rezulta \( a=\frac{1}{a} \) de unde obtinem \( tg x=1 \), deci solutiile ecuatiei sunt \( x \in \left{\frac{\pi}{4}+k \pi | k\in \mathbb{Z}\right} \).
Vrajitoarea Andrei
Post Reply

Return to “Clasa a X-a”