Daca \( ABC \) este un triunghi de laturi \( a,b,c \), iar \( 0<\alpha\le\beta<\frac{\pi}{2} \), atunci
\( b^2+c^2\tan ^2\beta >a^2\sin ^2\alpha \)
Emil C. Popa, Sibiu
Subiectul IV Gheorghe Lazar 2009 Sibiu
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Re: Subiectul IV Gheorghe Lazar 2009 Sibiu
Dem. Notam \( \tan\alpha =m \) , \( \tan\beta =n \) , unde \( 0< m\le n \) . Intrucat \( \sin^2\alpha=\frac {\tan^2\alpha}{1+\tan^2\alpha}=\frac {m^2}{1+m^2} \) ,DrAGos Calinescu wrote:Daca \( ABC \) este un triunghi si \( 0<\alpha\le\beta<\frac{\pi}{2} \), atunci \( b^2+c^2\tan ^2\beta >a^2\sin ^2\alpha \) .
inegalitatea propusa devine \( \left(1+m^2\right)\left(b^2+n^2c^2\right)>a^2m^2 \) . Se observa ca \( b+c\ >\ a \) si
\( \left(m^2+1\right)\left(b^2+n^2c^2\right)\stackrel{(C.B.S.)}{\ \ \ge\ \ }(mb+nc)^2\ge (mb+mc)^2=m^2(b+c)^2>m^2a^2\ . \)