Inecuatie in Z

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Inecuatie in Z

Post by Marius Mainea »

Rezolvati in \( \mathbb{Z} \) inecuatia \( a^2+b^2+2c^2+2bc+a+b\le 2ac. \)

Gheorghe Ghita, RMT 4/2008
mihai miculita
Pitagora
Posts: 93
Joined: Mon Nov 12, 2007 7:51 pm
Location: Oradea, Romania

Post by mihai miculita »

INDICATIE:
\(
\mbox{Avem: }a^2+b^2+2c^2+2bc+a+b\le 2ac\Leftrightarrow (a-c)^2+(b+c)^2\le -a-b.\ (1)\\
\mbox{Sa mai observam apoi ca: } n^2\ge n; (\forall)n\in\mathbb{Z}. \mbox{ Asa ca: } \\
\left \begin{\array} (a-c)^2\ge c-a; \ (\forall)a;b\in\mathbb{Z} \\
(b+c)^2\ge -(b+c); \ (\forall)b;c\in\mathbb{Z}\right\}\Rightarrow (a-c)^2+(b+c)^2\ge -a-b. \ (2)
\)
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Deci \( (a-c)^2+(b+c)^2+a+b=0 \ \ \wedge \ \ c-a\in \{0,1\}\ \ \wedge\ \ b+c\in\{0,-1\} \) etc.

Frumoase problema si solutia ! Chiar merita un premiu ...
Post Reply

Return to “Clasa a VII-a”