Functie integrabila

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Functie integrabila

Post by Marius Dragoi »

\( f:\mathbb{R}\rightarrow(0,\infty) \) integrabila astfel incat \( \int_0^1f(x)dx=\int_0^1f^2(x)dx \).
Aratati ca exista \( x_1, x_2 \in R \) astfel incat: \( \int_{x_1}^{x_2}\frac {dt}{f(t)}=1. \)

Shortlist ONM 2005
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Din Cauchy pentru \( f \) si constanta 1 obtinem
\( \int_0^1 f^2(x)dx \int_0^1 1 dx \geq \left(\int_0^1 f dx\right)^2 \). Aplicam ipoteza si obtinem \( 1\geq \int_0^1 f(x)dx \).

Acum aplicam Cahuchy pentru \( \sqrt{f} \) si \( \frac{1}{\sqrt{f}} \) si avem
\( \int_0^1 \frac{1}{f(x)}dx \int_0^1 f(x)dx \geq 1 \).
Deci \( \int_0^1 \frac{1}{f(x)}dx \geq \frac{1}{\int_0^1 f(x)dx}\geq 1 \).

Acum luam functia \( g(t)=\int_0^t \frac{1}{f(x)}dx \) cu \( g(0)=0,\ g(1)\geq 1 \). Deci exista un \( t_0 \in [0,1] \) pentru care \( g(t_0)=1 \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Analiza matematica”