Fie \( x,y,z\in (0,1) \) astfel incat \( \sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1 \). Aratati ca avem \( 8xyz\geq (1-x)(1-y)(1-z) \).
Observatie: incercati o abordare trigonometrica.
Inegalitate conditionata cu interpretare trigonometrica
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Avem \( \frac{a^2}{tgA}+\frac{b^2}{tgB}+\frac{c^2}{tgC}=4S\geq\frac{4p^2}{tgAtgBtgC}. \) Dar \( S=p^2tg\frac{A}{2}tg\frac{B}{2}tg\frac{C}{2} \)si atunci tinand cont ca \( tgA=\frac{2tg\frac{A}{2}}{1-tg^2{\frac{A}{2}} \) si ca \( \sum{tg\frac{A}{2}tg\frac{B}{2}}=1 \), notand \( x=tg^2{\frac{A}{2}} \) si analoagele, obtinem inegalitatea din enunt.
S.S.