Se considera intervalele nevide \( I=\left(a,b\right) \) si \( \: J=\left(c,d\right) \). Sa se arate ca oricare ar fi perechea \( \left(x_{1},y_{1}\right)\in I\times J \) exista o pereche \( \left(x_{2},y_{2}\right)\in I\times J \), \( \left(x_{1},y_{1}\right)\neq\left(x_{2},y_{2}\right) \), cu proprietatea ca \( x_{1}\cdot y_{1}=x_{2}\cdot y_{2} \).
Marilena Stoica, Lavinia Savu, concursul "Gh. Lazar", 2004
Produs cartezian
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Produs cartezian
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Se poate arata usor ca problema se reduce la cazul 0<a<b si 0<c<d.(exercitiu)
Fie \( a<x_1<b \) si \( c<y_1<d \)
Cazul 1) \( x_1y_1\le ad \)
atunci pentru \( a<x_2<x_1 \) rezulta \( c<y_1<\frac{x_1y_1}{x_2}<\frac{x_1y_1}{a}\le d \) de unde concluzia.
Cazul 2) \( x_1y_1>ad \) atunci pentru
\( y_1<y_2<d \) avem \( a<\frac{x_1y_1}{d}<\frac{x_1y_1}{y_2}<x_1<b \)de unde concluzia.
Fie \( a<x_1<b \) si \( c<y_1<d \)
Cazul 1) \( x_1y_1\le ad \)
atunci pentru \( a<x_2<x_1 \) rezulta \( c<y_1<\frac{x_1y_1}{x_2}<\frac{x_1y_1}{a}\le d \) de unde concluzia.
Cazul 2) \( x_1y_1>ad \) atunci pentru
\( y_1<y_2<d \) avem \( a<\frac{x_1y_1}{d}<\frac{x_1y_1}{y_2}<x_1<b \)de unde concluzia.