Dem. Se arata prin calcule "istovitoare" ca \( \frac 54\ <\ x_4=\sqrt {\sqrt {\sqrt 3+\frac 12}+\frac 13}\ <\ \frac 32 \)\( x_1=2\ \ \wedge\ \ {x_{n+1}=\sqrt {x_n+\frac 1n}\ ,\ (\forall )\ n\in\mathbb{N}^* \) \( \Longrightarrow \) \( \lim_{n\to\infty}\ x_n= 1 \ \ \wedge\ \ \lim_{n\to\infty}\ x_n^n=e\ . \)
si pentru orice \( n\ge 4 \) avem \( 1+\frac 1n<x_n<1+\frac {1}{n-2}\ \Longrightarrow\ 1+\frac {1}{n+1}<x_{n+1}<1+\frac {1}{n-1} \) deoarece
\( \left\{\begin{array}{ccccc}
\underline{\overline{\left\|\ 1+\frac 1n\ <\ x_n\ \right\|}} & \Longrightarrow & 1+\frac {1}{n+1}\stackrel {(1)}{\ <\ }\sqrt {1+\frac 1n+\frac 1n}\ <\ \sqrt {x_n+\frac 1n}=x_{n+1} & \Longrightarrow & \underline{\overline{\left\|\ 1+\frac {1}{n+1}\ <\ x_{n+1}\ \right\|}}\\\\\\\\
\underline{\overline{\left\|\ x_n\ <\ 1+\frac {1}{n-2}\ \right\|}} & \Longrightarrow & x_{n+1}=\sqrt {x_n+\frac 1n}\ <\ \sqrt {1+\frac {1}{n-2}+\frac 1n}\stackrel{(2)}{\ <\ }1+\frac {1}{n-1} & \Longrightarrow & \underline{\overline{\left\|\ x_{n+1}\ <\ 1+\frac {1}{n-1}\ \right\|}}\end{array}\ \right\|\ . \)
Se arata usor ca inegalitatea \( (1)\ \Longleftrightarrow\ 0\ <\ 1 \) si inegalitatea \( (2)\ \Longleftrightarrow\ n(n-4)+2\ >\ 0\ . \)
Conform principiului inductiei rezulta \( \overline{\underline{\left\|\ 1+\frac 1n\ <\ x_n\ <\ 1+\frac {1}{n-2}\ ,\ (\forall )\ n\ \ge\ 4\ \right\|}}\ . \) In concluzie, \( x_n\rightarrow 1\ . \)
Din lantul \( 1\ <\ n\left(x_n-1\right)\ <\ \frac {n}{n-2}\ ,\ (\forall )\ n\ \ge\ 4 \) se obtine \( \lim_{n\to\infty}\ x_n^n\stackrel{\left(1^{\infty}\right)}{\ \ \ =\ \ \ }\lim_{n\to\infty}\ e^{n\left(x_n-1\right)}=e\ . \)