Inegalitate simpla

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Inegalitate simpla

Post by BurnerD1 »

Sa se demonstreze ca \( a+b+c \le \frac{ab}{c} + \frac{bc}{a} + \frac{ac}{b} \)
Ce sa-i faci ....
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

\( \sum\frac{ab}{c}=\sum\frac{a^2b^2}{abc}=\frac{1}{abc}\sum a^2b^2\geq\frac{1}{abc}\sum a^2bc=\frac{1}{abc}\cdot abc\sum a=\sum a. \)
User avatar
BurnerD1
Euclid
Posts: 31
Joined: Tue Mar 03, 2009 11:36 am
Location: Acasa

Post by BurnerD1 »

Eu, ca elev de clasa a 8-a as fi abordat-o altfel, folosind inegalitatea mediilor

\( \sqrt{\frac{ab}{c} \cdot \frac{bc}{a}} \le \frac {\frac{ab}{c} + \frac{bc}{a}
}{2} \)


\( b \le \frac {\frac{ab}{c} + \frac{bc}{a}
}{2} \)


analog, \( a \le \frac{\frac{ab}{c} + \frac{ac}{b}}{2} \)
\( c \le \frac{\frac{ac}{b} + \frac{bc}{a}}{2} \)

insumandu-le obtinem \( a+b+c \le \frac{ab}{c} + \frac {ac}{b} + \frac {bc}{a} \)
Ce sa-i faci ....
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

BurnerD1 wrote:Eu, ca elev de clasa a 8-a as fi abordat-o altfel, folosind inegalitatea mediilor ...
Mi-a placut nu numai solutia ta, ci si "precizarea" ta. Iti dau un sfat. Dupa ce ai gandit solutia,

sa te preocupe si redactarea frumoasa a ei. In cazul de fata, iata cum vedeam eu redactarea ei :

\( \sum\frac {bc}{a}=\frac 12\cdot\sum a\left(\frac bc+\frac cb\right)\ \ge\ \frac 12\cdot\sum a\cdot 2=\sum a\ . \)

Redactata astfel, ai transmis cititorului si cat este de simpla, mai exact a inteles-o foarte usor.

Insa nu este rau sa sti si C.B.S. \( ^{(*)} \) (sau poate sti !) - vezi frumoasa solutie semnata BogdanCNFB

(el a folosit o inegalitate tot la nivelul clasei a VIII - a , \( x^2+y^2+z^2\ \ge xy+yz+zx \) - C.B.S.

particular) si o puteai folosi numai daca nu ai fi avut timp in concurs si/sau ai fi fost mai putin inspirat.

\( ^{(*)}\ \sum_{k=1}^n\frac {a_k}{b_k}\ \ge\ \frac {\left(\sum_{k=1}^na_k\right)^2}{\sum_{k=1}^na_kb_k} \) (forma echivalenta des folosita a inegalitatii C.B.S.).
Post Reply

Return to “Clasa a VIII-a”