Ecuatie aparent simpla
Moderators: Bogdan Posa, Laurian Filip
Ecuatie aparent simpla
Gasiti valorile numerelor \( x,y \in \mathbb{N} \) care satisfac ecuatia
\( xy + 6(x+y)=1987 \)
\( xy + 6(x+y)=1987 \)
Ce sa-i faci ....
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
nu inteleg..
Nu prea inteleg... cum din \( y+6 | 1987 - 6y \) rezulta ca \( y+6 | 2023 \) ??
Ce sa-i faci ....
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
\( y+6/1987-6y \)
Dar \( y+6/6y+36 \)
Stim ca daca \( a/b \) si \( a/c \Longrightarrow a/b+c \)
Deci din cele doua relatii \( y+6/2023 \)
Dar \( y+6/6y+36 \)
Stim ca daca \( a/b \) si \( a/c \Longrightarrow a/b+c \)
Deci din cele doua relatii \( y+6/2023 \)
Last edited by DrAGos Calinescu on Wed Mar 04, 2009 6:31 pm, edited 1 time in total.
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti