OLM Dambovita 2009, problema 2
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
OLM Dambovita 2009, problema 2
Demonstrati ca daca exista \( n \in \mathbb{N}^* \) astfel incat \( 1+x+x^{2}+\ldots+x^{2n}>\frac{n+1}{2n+1} \), atunci \( 1+x+x^{2}+\ldots+x^{2n+2}>\frac{n+2}{2n+3} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Problema 3 de aici
rezolvare
Cunoastem faptul ca \( 1 + x + x^{2} +\ldots + ... +x^{2n} > \frac{n+1}{2n+1} \)
Aplicam principiul inductiei, astfel ca \( n \Rightarrow n+1 \) si obtinem: \( 1 + x + x^{2} +\ldots + ... +x^{2(n+1)} > \frac{(n+1)+1}{2(n+1)+1} \), adica \( 1 + x + x^{2} +\ldots + ... +x^{2n+2} > \frac{n+2}{2n+3} \)
Aplicam principiul inductiei, astfel ca \( n \Rightarrow n+1 \) si obtinem: \( 1 + x + x^{2} +\ldots + ... +x^{2(n+1)} > \frac{(n+1)+1}{2(n+1)+1} \), adica \( 1 + x + x^{2} +\ldots + ... +x^{2n+2} > \frac{n+2}{2n+3} \)
Ce sa-i faci ....
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
Re: rezolvare
Nu e corecta abordarea, nu toate inegalitatile sunt inductive.BurnerD1 wrote: Aplicam principiul inductiei, astfel ca \( n \Rightarrow n+1 \) si obtinem: \( 1 + x + x^{2} +\ldots + ... +x^{2(n+1)} > \frac{(n+1)+1}{2(n+1)+1} \), adica \( 1 + x + x^{2} +\ldots + ... +x^{2n+2} > \frac{n+2}{2n+3} \)
Avem \( 1+x+...+x^{2n+2}=1+x+x^2(1+x+...+x^{2n}<1+x+x^2\cdot\frac{n+1}{2n+1} \)
Demonstram ca este mai mare ca \( \frac{n+2}{2n+3}\Longleftrightarrow x^2\cdot\frac{n+1}{2n+1}+x+(1-\frac{n+2}{2n+3})>0 \)
\( \Delta =1-4\frac{n+1}{2n+1}(1-\frac{n+2}{2n+3})=1-4\frac{n+1}{2n+1}\cdot\frac{n+1}{2n+3}=1-4\frac{n^2+2n+1}{4n^2+8n+3}=1-\frac{4n^2+8n+4}{4n^2+8n+3}<0 \)
Cum \( \frac{n+1}{2n+1}>0 \) rezulta inegalitatea cautata.
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti