Functie bijectiva

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
dragosunguras
Posts: 2
Joined: Wed Apr 02, 2008 5:13 pm
Location: Otelu-Rosu

Functie bijectiva

Post by dragosunguras »

Fie \( f:[-\pi/2,\pi/2]\to\mathbb{R} \). Exista functii bijective f? Daca da, care ar fi acelea?
User avatar
DrAGos Calinescu
Thales
Posts: 121
Joined: Sun Dec 07, 2008 10:00 pm
Location: Pitesti

Post by DrAGos Calinescu »

Tangenta, contangenta...
enescu
Pitagora
Posts: 60
Joined: Tue May 20, 2008 10:08 pm

Post by enescu »

DrAGos Calinescu wrote:Tangenta, contangenta...
Pai, nu sunt definite pe intervalul inchis \( \left[ -\frac{\pi}{2},\frac{\pi}{2}\right] \), nu?
Bogdan Enescu
dragosunguras
Posts: 2
Joined: Wed Apr 02, 2008 5:13 pm
Location: Otelu-Rosu

Post by dragosunguras »

exact in asta consta, daca vreti ,dificultatea problemei ...pt ca e definita pe interval inchis
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( [\frac{\pi}{2},\frac{\pi}{2}] \) si \( (\frac{\pi}{2},\frac{\pi}{2}) \) sunt cardinal echivalente( cardinalul lor se numeste puterea continuului) deci exista o functie bijectiva \( g:[\frac{\pi}{2},\frac{\pi}{2}]\rightarrow (\frac{\pi}{2},\frac{\pi}{2}) \)

Apoi functia cautata este \( \tan \circ g: [\frac{\pi}{2},\frac{\pi}{2}]\rightarrow \mathbb{R} \)
Post Reply

Return to “Clasa a IX-a”