O problema cu un sir, poate banala...

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Mircea Cimpoeas
Euclid
Posts: 14
Joined: Thu Sep 27, 2007 8:28 pm

O problema cu un sir, poate banala...

Post by Mircea Cimpoeas »

Este sirul \( x_n = \frac{2\cdot 4 \cdots (2n)}{1\cdot 3\cdots (2n-1)} \) convergent?
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Post by Cezar Lupu »

Sirul \( x_{n} \) este divergent. Ai doua variante sa vezi asta:

1. Poti sa demonstrezi prin inductie ca \( x_{n}\geq\sqrt{2n+1} \).

2. Conform cu inegalitatea mediilor, avem ca \( \sqrt{(2k-1)(2k+1)}\leq\frac{(2k-1)+(2k+1)}{2}=2k \). Acum dand valori lui \( k=1,2,3, \ldots , n \) vom obtine ca \( x_{n}\geq\sqrt{2n+1} \).

Prin urmare, \( \lim_{n\to\infty} x_{n}=\infty \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Varianta 3) \( \left(\frac{x_{n+1}}{x_n}\right)^n=\left(\frac{2n+2}{2n+1}\right)^n\longrightarrow e^{\frac{1}{2}} \) si deoarece \( e^{\frac{1}{2}}>1 \) rezulta \( x_n\to\infty \).
User avatar
Andrei Ciupan
Euclid
Posts: 19
Joined: Thu Sep 27, 2007 8:34 pm

Post by Andrei Ciupan »

Aveti vreo solutie pentru criteriul folosit in solutia a treia?
Andrei Ciupan.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Teorema. Fie un sir strict crescator de termeni pozitivi \( (x_n)\ ,\ n\in\mathbb{N}^* \)
pentru care \( \frac {x_{n+1}}{x_n}\rightarrow 1 \) si \( \left(\frac {x_{n+1}}{x_n}\right)^n\rightarrow\ l\ >\ 1 \). Atunci \( x_n\ \rightarrow\ \infty \) .
Demonstratie. Presupunem prin absurd ca \( x_n\rightarrow L\in \mathbb{R}^*_+ \) (finit). Notam \( y_n=\left(\frac {x_{n+1}}{x_n}\right)^n\ \rightarrow\ l\ >\ 1 \). Asadar si \( \sqrt[n]{y_1y_2\ldots y_n}\ \rightarrow\ l \) , adica \( \sqrt[n]{\frac {x_2}{x_1}\cdot\frac {x_3^2}{x_2^2}\cdot \frac {x_4^3}{x_3^3}\cdot\cdot\cdot\cdot\cdot\frac {x_{n+1}^n}{x_n^n}}=\frac {x_{n+1}}{\sqrt[n]{x_1x_2\ldots x_n}}\ \rightarrow\ \frac LL\ =\ 1\ \Longrightarrow\ l\ =\ 1 \), absurd.
Post Reply

Return to “Analiza matematica”