Geometrie

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Geometrie

Post by alex2008 »

Fie dreptunghiul \( ABCD \) in care \( AB=BC\sqrt{2} \) si punctul \( M \) care apartine semicercului de diametru \( AB \), situat in acelasi semiplan cu dreapta \( CD \). Notam \( F\in DM\cap AB \) si \( G\in CM\cap AB \). Sa se arate relatia \( AG^2+BF^2=AB^2 \).

Geometrie Plana (sintetica, vectoriala, analitica), Virgil Nicula
Last edited by alex2008 on Sat Feb 28, 2009 5:31 pm, edited 1 time in total.
. A snake that slithers on the ground can only dream of flying through the air.
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

OFF-topic. Aceasta frumoasa problema apartine lui Fermat (1601-1665), unic cu acest nume in matematica ! Deci are o vechime de aprox. patru secole (prin adaos !) si a aparut in numeroase culegeri de probleme si reviste, mai vechi sau mai recente.

ON-topic. Va recomand sa folositi geometria analitica (dupa parerea mea, cea mai scurta demonstratie !) alegand dreapta \( AB \) ca axa \( Ox \) si mediatoarea laturii \( [AB] \) ca axa \( Oy \) astfel incat \( B(1,0) \) si \( C(1,\sqrt 2)\ . \)

In solutia mea metrica am ajuns in final la identitatea (pentru \( a=b=1 \) si \( c=-\sqrt 2 \) ) , unde \( \phi=m\ (\angle BOM) \) :

\( \underline{\overline{\left\|\ (a+b\cdot\cos\phi +c\cdot\sin\phi )^2+(a-b\cdot\cos\phi +c\cdot\sin\phi )^2=2(c+a\cdot\sin\phi )^2+2\left(a^2+b^2-c^2\right)\cdot\cos^2\phi\ \right\|}} \) .
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

alex2008 wrote: Fie dreptunghiul \( ABCD \) in care \( AB=BC\sqrt{2} \) si punctul \( M \) care apartine semicercului de diametru \( AB \),

situat in acelasi semiplan cu dreapta \( CD \). Notam \( F\in DM\cap AB \) si \( G\in CM\cap AB \).

Sa se arate relatia \( AG^2+BF^2=AB^2 \) (Geometrie Plana - sintetica, vectoriala, analitica, Virgil Nicula)
Dem. Presupunem fara a restrange generalitatea ca \( AB=CD=2 \) si \( AD=BC=\sqrt 2\ . \) Notam

\( \left\|\ \begin{array}{c}
m(\widehat {BOM})=2x\\\\\\\\
m(\widehat {BCM})=u\\\\\\\\
m(\widehat {ADM})=v\end{array}\ \right\|\ . \)
Se observa ca \( \left\|\ \begin{array}{c}
MA=2\cos x\\\\\\\\
MB=2\sin x\end{array}\ \right\| \)
si aplicam teorema sinusurilor in triunghiurile :

\( \odot\ \ \triangle\ ADM\ :\ \frac {MA}{\sin v}=\frac {AD}{\cos (x-v)}\ \Longrightarrow\ \frac {2\cos x}{\sin v}=\frac {\sqrt 2}{\cos (x-v)}\ \Longrightarrow\ \sqrt 2\cos x=\frac {\tan v}{\cos x+\sin x\tan v}\ \Longrightarrow \)

\( \frac {AF}{AD}=\tan v=\frac {\sqrt 2\cos^2x}{1-\sqrt 2\cos x\sin x}\ \Longrightarrow\ AF=\frac {2\cos^2x}{1-\sqrt 2\cos x\sin x}\ \Longrightarrow\ \overline{\underline{\left\|\ FB=\frac {2\sin^2x-\sqrt 2\sin 2x}{1-\sqrt 2\sin x\cos x}\ \right\|}} \) .

\( \odot\ \ \triangle\ BCM\ :\ \frac {MB}{\sin u}=\frac {BC}{\sin (x+u)}\ \Longrightarrow\ \frac {2\sin x}{\sin u}=\frac {\sqrt 2}{\sin (x+u)}\ \Longrightarrow\ \sqrt 2\sin x=\frac {\tan u}{\sin x+\cos x\tan u}\ \Longrightarrow \)

\( \frac {BG}{BC}=\tan u=\frac {\sqrt 2\sin^2x}{1-\sqrt 2\cos x\sin x}\ \Longrightarrow\ BG=\frac {2\sin^2x}{1-\sqrt 2\cos x\sin x}\ \Longrightarrow\ \overline{\underline{\left\|\ GA=\frac {\sqrt 2\sin 2x-2\cos^2x}{1-\sqrt 2\sin x\cos x}\ \right\|}} \) .

Deci \( \overline{\underline{\left\|\ FB^2+GA^2=AB^2\ \right\|}}\ \Longleftrightarrow\ \left(2\sin^2x-\sqrt 2\sin 2x\right)^2+\left(2\cos^2x-\sqrt 2\sin 2x\right)^2=4\left(1-\sqrt 2\sin x\cos x\right)^2 \)

adica \( \left(1-\cos 2x-\sqrt 2\sin 2x\right)^2+\left(1+\cos 2x-\sqrt 2\sin 2x\right)^2=\left(2-\sqrt 2\sin 2x\right)^2\ . \) Notam \( 2x=y\ . \) Prin urmare,

\( \left(1-\cos y-\sqrt 2\sin y\right)^2+\left(1+\cos y-\sqrt 2\sin y\right)^2=\left(2-\sqrt 2\sin y\right)^2\ \Longleftrightarrow \)

\( 2+2\cos^2y+4\sin^2y-4\sqrt 2\sin y=4-4\sqrt 2\sin y+2\sin^2y\ \Longleftrightarrow\ \underline{\overline{\left\|\ \cos^2y+\sin^2y=1\ \right\|}} \) , evident.
Post Reply

Return to “Clasa a IX-a”