Pentru un triunghi \( ABC \) notam \( \left\|\ \begin{array}{c}
A=(b+c)(c+a)(a+b)-8abc\\\\
B=abc-(b+c-a)(c+a-b)(a+b-c)\end{array}\ \right\| \) .
Se arata usor ca \( A\ge 0 \) si \( B\ge 0 \) . Sa se arate ca \( A\ge B\ge 0 \) , adica inegalitatea
\( \prod (b+c)+\prod (b+c-a)\ge 9abc \) (Virgil Nicula & Cosmin Pohoata, Mathematical Reflections).
O inegalitate interesanta intr-un triunghi.
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Lasam notatiile cele stabilite de domnul profesor Marius Mainea.Virgil Nicula wrote:Se poate arata ceva mai frumos :
\( \underline{\overline{\left\| \prod (b+c)+\prod (b+c-a)\ \le\ (a+b+c)(ab+bc+ca)\ \right\|}}\ . \)
Inegalitatea va fi echivalenta cu:
\( \prod (s+x)+8xyz\leq 2s(s^2 +\sum xy)\Longleftrightarrow \)
\( \Longleftrightarrow s^3 +s(\sum xy)+s^3 +9xyz\leq 2s^3 +2s(\sum xy)\Longleftrightarrow \)
\( \Longleftrightarrow 9xyz\leq (x+y+z)(xy + yx+ xz)\Longleftrightarrow \)
\( \Longleftrightarrow z(x-y)^2 +x(y-z)^2 +y(z-x)^2 \geq 0. \)
Feuerbach