Ecuatie logaritmica 3

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Ecuatie logaritmica 3

Post by BogdanCNFB »

Fie \( n\in N,n\ge 2 \). Rezolvati ecuatia:
\( \log_n (x+n(n-1))=1+\sqrt[n]{\log_n x} \).
andy crisan
Pitagora
Posts: 56
Joined: Sun Dec 28, 2008 5:50 pm
Location: Pitesti

Post by andy crisan »

\( \log_{n}(x+n(n-1))\geq \log_{n}(n\sqrt[n]{x\cdot n^{n-1}})=\1+\frac{\log_{n}(x)+n-1}{n}\geq 1+\sqrt[n]{\log_{n}(x)} \), deci egalitate in toate inegalitatile. Rezulta ca \( x=n \) este unica solutie a ecuatiei.
Post Reply

Return to “Clasa a X-a”