Doua limite cu sirul armonic

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Doua limite cu sirul armonic

Post by Cezar Lupu »

Fie sirul armonic \( H_{n}=1+\frac{1}{2}+\ldots +\frac{1}{n} \), \( n\geq 1 \). Sa se calculeze:

i) \( \lim_{n\to\infty}(\sqrt[n]{H_{n}})^{H_{n}} \);

ii) \( \lim_{n\to\infty}\frac{n}{ln^{2} n}\left[(\sqrt[n]{H_{n}})^{H_{n}}-1\right] \).


Cezar Lupu, R.M.I. C-ta, 2004
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza matematica”