Limite de siruri egale cu 0 si 1

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Limite de siruri egale cu 0 si 1

Post by Cezar Lupu »

Pentru orice numar natural \( n\geq 2 \) definim sirul \( (x_{n})_{n\geq 2} \) astfel: \( x_{2}>0 \) si \( x_{n}=x_{n+1}(\sqrt[n]{n})^{H_{n}} \), unde \( H_{n}=1+\frac{1}{2}+\ldots +\frac{1}{n} \).
Sa se demonstreze ca:

i) \( \lim_{n\to\infty} x_{n}=0 \);

ii) \( \lim_{n\to\infty} nx_{n}=0 \);

iii) \( \lim_{n\to\infty}\left(\frac{x_{n}}{x_{n+1}}\right)^{ln n}=1 \).

Cezar & Tudorel Lupu, R.M.I. C-ta, 2005
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Analiza matematica”