inegalitate diferentiala cu supremumul finit

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

inegalitate diferentiala cu supremumul finit

Post by Cezar Lupu »

Fie \( f:\mathbb{R}_{+}\ro\mathbb{R}_{+} \) o functie de clasa \( C^{1} \) pe \( \mathbb{R}_{+} \), satisfacand inegalitatea

\( f^\prime (t) +f^{2}(t) \leq af(t), \forall t\geq b \), unde \( a, b\geq 0 \) sunt constante. Sa se demonstreze ca \( \sup_{t\in\mathbb{R}_{+}}f(t)<\infty \).

Gheorghe Morosanu, Cristian Valdimirescu, G.M.A, 2006
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
Post Reply

Return to “Ecuatii diferentiale ordinare”