a) Daca \( x,y,z \in \mathbb{R} \) si \( a,b,c \in (0, \infty) \) demonstrati ca \( \frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}\ge\frac{\left(x+y+z\right)^{2}}{a+b+c} \).
b) Folosind eventual rezultatul de la a) demonstrati ca daca \( a,b,c \in (0, \infty) \), astfel incat \( a^2+b^2+c^2=1 \) atunci \( \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\left(a+b+c\right)^{2} \).
OLM Dambovita 2009, problema 1
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
OLM Dambovita 2009, problema 1
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste