OLM Dambovita 2009, problema 1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

OLM Dambovita 2009, problema 1

Post by Claudiu Mindrila »

a) Daca \( x,y,z \in \mathbb{R} \) si \( a,b,c \in (0, \infty) \) demonstrati ca \( \frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}\ge\frac{\left(x+y+z\right)^{2}}{a+b+c} \).

b) Folosind eventual rezultatul de la a) demonstrati ca daca \( a,b,c \in (0, \infty) \), astfel incat \( a^2+b^2+c^2=1 \) atunci \( \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\left(a+b+c\right)^{2} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
salazar
Pitagora
Posts: 91
Joined: Mon Apr 06, 2009 7:36 am
Location: Alba Iulia

Post by salazar »

a) Iese din inegalitatea C.B.S.;
b) \( \sum\frac{a}{b}=\sum\frac{a^2}{ab}\stackrel{(a)}\ge\frac{(a+b+c)^2}{ab+bc+ca}\ge(a+b+c)^2\Longleftrightarrow ab+bc+ca\le 1\Longleftrightarrow \) \( a^2+b^2+c^2\ge ab+bc+ca\Longleftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\ge 0 \).
Post Reply

Return to “Clasa a VIII-a”