Inegalitate conditionata cu produs

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Inegalitate conditionata cu produs

Post by alex2008 »

Sa se demonstreze ca \( 1+\frac{3}{a+b+c}\ge \frac{6}{ab+bc+ca} \) , cu \( a,b,c>0 \) si \( abc=1 \) .
. A snake that slithers on the ground can only dream of flying through the air.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notind \( x=\frac{1}{a} \) , \( y=\frac{1}{b} \) , \( z=\frac{1}{c} \) atunci \( xyz=1 \) si inegalitatea devine

\( 1+\frac{3}{xy+yz+zx}\ge\frac{6}{x+y+z} \) care este evidenta deoarece

\( LHS\ge 2\sqrt{\frac{3}{xy+yz+zx}}\ge2\cdot\frac{3}{x+y+z} \)
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

\( (ab + bc + ca)^2\ge 3abc(a + b + c) = 3(a + b + c) \)

Deci \( 1 + \frac {3}{a + b + c} \geq 1 + \frac {9}{(ab + ac + bc)^2}\geq \frac {6}{ab + ac + bc} \)
. A snake that slithers on the ground can only dream of flying through the air.
Post Reply

Return to “Clasa a IX-a”