Fie a,b,c>0 astfel incat a+b+c=1. Sa se arate ca:
\( (ab+bc+ca)(\frac{a}{b^2+b}+\frac{b}{c^2+c}+\frac{c}{a^2+a})\ge \frac{3}{4}. \)
Inegalitate conditionata 4
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Generalizare!
Are loc inegalitatea mai generala:
Fie \( a_{1}, a_{2},\dots, a_{n} \) numere reale pozitive cu proprietatea ca: \( a_{1}+a_{2}+\dots+a_{n}=1. \) Demonstrati ca:
\( (a_{1}a_{2}+a_{2}a_{3}+\dots+a_{n-1}a_{n}+a_{n}a_{1})(\frac{a_{1}}{a_{2}^2+a_{2}}+\frac{a_{2}}{a_{3}^2+a_{3}}+\dots+\frac{a_{n-1}}{a_{n}^2+a_{n}}+\frac{a_{n}}{a_{1}^2+a_{1}})\geq\frac{n}{n+1}. \)
MOSP 2007
Fie \( a_{1}, a_{2},\dots, a_{n} \) numere reale pozitive cu proprietatea ca: \( a_{1}+a_{2}+\dots+a_{n}=1. \) Demonstrati ca:
\( (a_{1}a_{2}+a_{2}a_{3}+\dots+a_{n-1}a_{n}+a_{n}a_{1})(\frac{a_{1}}{a_{2}^2+a_{2}}+\frac{a_{2}}{a_{3}^2+a_{3}}+\dots+\frac{a_{n-1}}{a_{n}^2+a_{n}}+\frac{a_{n}}{a_{1}^2+a_{1}})\geq\frac{n}{n+1}. \)
MOSP 2007
Feuerbach
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani