Sir de numere rationale

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Sir de numere rationale

Post by Beniamin Bogosel »

Demonstrati ca daca sirul \( \frac{p_n}{q_n} \), unde numaratorul si numitorul sunt numere intregi, este convergent la un numar irational, atunci \( q_n \to \infty \) si daca limita nu e 0, atunci si \( p_n \to \infty \).
Last edited by Beniamin Bogosel on Mon Feb 02, 2009 3:57 pm, edited 1 time in total.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Daca \( \frac{p_n}{q_n}\longrightarrow a \), \( a>0 \), atunci putem presupune ca \( p_n,q_n \) sunt naturale de la un rang.

Presupunand prin absurd ca \( q_{n} \) nu tinde la \( +\infty \), fie un subsir \( q_{k_{n}}\longrightarrow b\in\mathbb{Z} \) avand termeni naturali deci este stationar de la un rang \( q_{k_n}=q \) si de aici \( p_{k_n}\longrightarrow p\in\mathbb{Z} \) este convergent, asadar \( \frac{p}{q}=a\in\mathbb{Q} \) fals.

Totdeauna \( a\neq 0 \)deoarece \( a\in\mathbb{R}-\mathbb{Q} \) si atunci evident \( p_n\longrightarrow+\infty \)
Last edited by Marius Mainea on Mon Feb 02, 2009 10:02 pm, edited 1 time in total.
Marius Perianu
Euclid
Posts: 40
Joined: Thu Dec 06, 2007 11:40 pm
Location: Slatina

Functia lui Riemann

Post by Marius Perianu »

Faptul ca \( q_{n} \to \infty \) este un rezultat clasic folosit in demonstratia faptului ca functia lui Riemann \( f : (0,1] \to \mathbb{R}, \) \( f(x)=\left\{0, \ x \in \mathbb{R} - \mathbb{Q}\\1/q, \ x=p/q, \ p,q \in \mathbb{N}^*, \ (p,q)=1 \) este continua in punctele irationale (si discontinua în punctele rationale).
Marius Perianu
Laurentiu Tucaa
Thales
Posts: 145
Joined: Sun Mar 22, 2009 6:22 pm
Location: Pitesti

Post by Laurentiu Tucaa »

Si cred ca de aici ar rezulta ca functia lui Riemann este integrabila, deoarece este discontinua pe o multime numarabila (parca criteriul Lebesgue).
Post Reply

Return to “Analiza matematica”