Sa se arate ca:
\( \frac{a-d}{b+c+2d}+\frac{b-a}{c+d+2a}+\frac{c-b}{d+a+2b}+\frac{d-c}{a+b+2c}\ge 0 \)
oricare ar fi numerele reale pozitive a, b, c, d.
V. Berghea, G.M.
Inegalitate rationala
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitatea din enunt este echivalenta cu \( \frac{a}{b+c+2d}+\frac{b}{c+d+2a}+\frac{c}{d+a+2b}+\frac{d}{a+b+2c}\ge\frac{d}{a+b+2c}+\frac{a}{c+d+2a}+\frac{b}{d+a+2b}+\frac{c}{a+b+2c} \).
Adunand
\( \frac{b+c+d}{b+c+2d}+\frac{c+d+a}{c+d+2a}+\frac{d+a+b}{d+a+2b}+\frac{a+b+c}{a+b+2c} \)
in ambii membri avem ca
\( \left(a+b+c+d\right)\left(\frac{1}{b+c+2d}+\frac{1}{c+d+2a}+\frac{1}{d+a+2b}+\frac{1}{a+b+2c}\right)\ge4 \)
sau
\( \frac{1}{b+c+2d}+\frac{1}{c+d+2a}+\frac{1}{d+a+2b}+\frac{1}{a+b+2c}\ge\frac{4}{a+b+c+d} \).
Aceasta din urma este inegalitatea Cauchy-Buniakowski-Schwarz:
\( \frac{1}{b+c+2d}+\frac{1}{c+d+2a}+\frac{1}{d+a+2b}+\frac{1}{a+b+2c}\ge\frac{4^{2}}{4\left(a+b+c+d\right)}=\frac{4}{a+b+c+d}. \)
Adunand
\( \frac{b+c+d}{b+c+2d}+\frac{c+d+a}{c+d+2a}+\frac{d+a+b}{d+a+2b}+\frac{a+b+c}{a+b+2c} \)
in ambii membri avem ca
\( \left(a+b+c+d\right)\left(\frac{1}{b+c+2d}+\frac{1}{c+d+2a}+\frac{1}{d+a+2b}+\frac{1}{a+b+2c}\right)\ge4 \)
sau
\( \frac{1}{b+c+2d}+\frac{1}{c+d+2a}+\frac{1}{d+a+2b}+\frac{1}{a+b+2c}\ge\frac{4}{a+b+c+d} \).
Aceasta din urma este inegalitatea Cauchy-Buniakowski-Schwarz:
\( \frac{1}{b+c+2d}+\frac{1}{c+d+2a}+\frac{1}{d+a+2b}+\frac{1}{a+b+2c}\ge\frac{4^{2}}{4\left(a+b+c+d\right)}=\frac{4}{a+b+c+d}. \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste