o multime

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Adriana Nistor
Pitagora
Posts: 82
Joined: Thu Aug 07, 2008 10:07 pm
Location: Drobeta Turnu Severin, Mehedinti

o multime

Post by Adriana Nistor »

Determinati multimea S a numerelor naturale \( n \) nenule care indeplinesc conditia : pentru orice \( a,b \) reale nenule exista numerele reale \( x_1,x_2,...,x_n \) astfel incat \( \sum_{k=1}^{n}x_k=a \) si \( \sum_{k=1}^{n}\frac{1}{x_k}=b \).
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: o multime

Post by Marius Mainea »

Adriana Nistor wrote:Determinati multimea S a numerelor naturale \( n \) nenule care indeplinesc conditia : pentru orice \( a,b \) reale nenule exista numerele reale \( x_1,x_2,...,x_n \) astfel incat \( \sum_{k=1}^{n}x_k=a \) si \( \sum_{k=1}^{n}\frac{1}{x_k}=b \).
Pentru a=b=1 sistemul \( \left{\begin{array}{cc} x_1+x_2=a\\\frac{1}{x_1}+\frac{1}{x_2}=b\end{array} \) nu are solutie, asadar \( n\ge 3 \)

Deoarece pentru \( n\ge3 \) sistemul din enunt are cel putin o solutie cu\( x_3=x_4=...=x_n \) rezulta ca \( S=\mathbb{N}\setminus\{0,1,2\} \)
Post Reply

Return to “Clasa a IX-a”