Generalizare produs cifre

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Generalizare produs cifre

Post by Beniamin Bogosel »

Prezint o generalizare a problemei 4 de la TMMATE 2008

Daca notam cu \( p(n) \) produsul cifrelor nenule ale lui \( n \) atunci demonstrati ca \( \sum_{i=1}^{10^k}p(i) \) este puterea \( k \) a unui numar natural.

La concurs problema a fost data pentru \( k=3 \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Adriana Nistor
Pitagora
Posts: 82
Joined: Thu Aug 07, 2008 10:07 pm
Location: Drobeta Turnu Severin, Mehedinti

Post by Adriana Nistor »

Demonstram ca \( \sum_{i=1}^{10^k}p(i) = 46^k \)
Inductie: pentru \( k=1 \) evident \( \sum_{i=1}^{10} =46 \)
Pentru \( k=2 \) \( \sum_{i=1}^{100} =46+46+46*2+46*3+...+46*9=46(1+1+2+...+9)=
46*46= 46^2 \)

Presupunem ca pentru \( k=n \) propozitia "\( P(k): \sum_{i=1}^{10^k} = 46^k \) " e adevarata si demonstram propozitia pentru \( k=n+1 \).
\( \sum_{i=1}^{10^{(n+1)}} =46^n+46^n + 2*46^n+3*46^n+...+9*46^n=
(1+1+2+3+...+9)* 46^n=46*46^n=46^{(n+1)} \)
.
Deci suma data e puterea k a numarului 46,care e natural.
Adriana Nistor
Pitagora
Posts: 82
Joined: Thu Aug 07, 2008 10:07 pm
Location: Drobeta Turnu Severin, Mehedinti

Post by Adriana Nistor »

Scuze ,chiar nu-mi apare in latex... :roll:
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

incearca sa dai edit la un mesaj, si vei vedea ca la tine e bifat "diable bbcode in this post". Daca il debifezi iti va aparea ce e scris in latex...


Pentru a iti merge latex-ul la toate mesajele, apesi sus pe "Profile" si la sectiunea "Preferences" bifezi "Always allow BBCode"
Post Reply

Return to “Clasa a IX-a”