max{a,b,c} \ge 1

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

max{a,b,c} \ge 1

Post by Claudiu Mindrila »

Se stie ca numerele reale pozitive \( a,b,c \) au proprietatea ca \( a+b+c=abc+2 \). Demonstrati ca \( \max \{a,b,c} \ge 1. \)
Valentin Vornicu, lista scurta, 2004
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: max{a,b,c} \ge 1

Post by Marius Mainea »

Claudiu Mindrila wrote:Se stie ca numerele reale pozitive \( a,b,c \) au proprietatea ca \( a+b+c=abc+2 \). Demonstrati ca \( \max \{a,b,c} \ge 1. \)
Valentin Vornicu, lista scurta, 2004
Presupunem prin absurd ca \( a,b,c\in (0,1) \) si notam

\( a=x+1 ,b=y+1 ,c=z+1;x,y,z\in(-1,0) \)

Atunci relatia din enunt devine:

\( x+y+z+3=xyz+xy+yz+zx+x+y+z+3 \) de unde

\( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-1 \)

ceea ce este o contradictie.
Post Reply

Return to “Clasa a VIII-a”