Ecuatii fara solutii in Z
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
gigi.becali
Ecuatii fara solutii in Z
Fie \( n \geq 3 \) si \( x,y,z \in Z^{*}, x \neq y \neq z \). Aratati ca ecuatia \( x^{3n}+y^{3n}-z^{3n}+3x^{3n}y^{3n}z^{3n}=0 \) nu are solutii in numere intregi.
Last edited by gigi.becali on Tue Jan 27, 2009 5:03 pm, edited 1 time in total.
-
Jianu.Ovidiu
- Arhimede
- Posts: 7
- Joined: Mon Feb 16, 2009 8:33 pm
Re: Ecuatii fara solutii in Z
Presupunem ca ecuatia are solutii in \( \mathbb{Z} \Rightarrow \exists x,y,z \in \mathbb{Z} \) a.i. \( x^{3n} + y^{3n} - z^{3n} + 3x^{3n}y^{3n}z^{3n}= 0 \Leftrightarrow (x^n)^3 + (y^n)^3 (-z^n)^3 - 3(x^n)^3(y^n)^3(-z^n)^3=0\Leftrightarrow \)
\( \Leftrightarrow \frac{1}{2}(x^n +y^n-z^n)\left[ (x^n-y^n)^2 +(y^n+z^n)^2 + (z^n + x^n)^2 \right] = 0 \Leftrightarrow x^n + y^n - z^n = 0 \) sau \( (x^n-y^n)^2 +(y^n+z^n)^2 + (z^n + x^n)^2 = 0 \).
In primul caz ne lovim de marea teorema a lui Fermat deci \( x^n+y^n-z^n \) nu poate fi \( 0 \) iar in cel de-al doilea caz suma nu poate fi nula pentru ca din ipoteza avem \( x \neq y \).
q.e.d.
\( \Leftrightarrow \frac{1}{2}(x^n +y^n-z^n)\left[ (x^n-y^n)^2 +(y^n+z^n)^2 + (z^n + x^n)^2 \right] = 0 \Leftrightarrow x^n + y^n - z^n = 0 \) sau \( (x^n-y^n)^2 +(y^n+z^n)^2 + (z^n + x^n)^2 = 0 \).
In primul caz ne lovim de marea teorema a lui Fermat deci \( x^n+y^n-z^n \) nu poate fi \( 0 \) iar in cel de-al doilea caz suma nu poate fi nula pentru ca din ipoteza avem \( x \neq y \).
q.e.d.
-
Jianu.Ovidiu
- Arhimede
- Posts: 7
- Joined: Mon Feb 16, 2009 8:33 pm
Re: Ecuatii fara solutii in Z
Chiar, mai gaseste cineva o solutie la problema asta? Ca daca da, poate reusim sa demonstram si marea teorema a lui Fermat intr-un mod simplist 
-
Jianu.Ovidiu
- Arhimede
- Posts: 7
- Joined: Mon Feb 16, 2009 8:33 pm