Aratati ca sirul \( (x_n)_{n \geq 1} \), definit prin \( x_n = \sum_{k=1}^n \frac{1}{n+k+k^2}, \forall n \geq 1 \) este marginit si calculati \( \lim_{n \to \infty}{x_n} \).
Subiectul II, Etapa locala, 24 Ianuarie 2009, Salaj, clasa a XI-a
Limita unui sir marginit
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
\( x_n\le\sum_{k=1}^n{\frac{1}{k+k^2}}=1-\frac{1}{n+1}<1 \) deci \( (x_n) \) este marginit.
propozitie (vezi V. Nicula - Analiza matematica, clasa a XI-a, ed. Teora, 1999):
,, Fie functiile \( f,g : (0,\infty)\rightarrow\mathbb{R},\ a\in(0,\infty] \) pentru care \( \lim_{x\searrow 0}f(x)=\lim_{\searrow 0}g(x)=0 \) si pentru orice x>0 si \( \lim_{x\searrow 0}\frac{f(x)}{g(x)}=1 \). Daca \( (x_{nm})_{n\ge m} \) este un sir pentru care \( x_{nm}\neq 0 \) si pentru orice \( n\ge m\ge1 \) si \( \lim_{n\to\infty}x_{nm}=0 \) iar \( \lim_{n\to\infty}\sum_{k=1}^n{g(x_{nk})}=l\in[0,\infty], \) atunci si \( \lim_{n\to\infty}\sum_{k=1}^n{f(x_{nk})}=l \). ''
Cu acestea putem arata ca \( \lim_{n\to\infty}\sum_{k=1}^n\frac{n}{n^2+k+k^2}=\frac{\pi}{4} \)
propozitie (vezi V. Nicula - Analiza matematica, clasa a XI-a, ed. Teora, 1999):
,, Fie functiile \( f,g : (0,\infty)\rightarrow\mathbb{R},\ a\in(0,\infty] \) pentru care \( \lim_{x\searrow 0}f(x)=\lim_{\searrow 0}g(x)=0 \) si pentru orice x>0 si \( \lim_{x\searrow 0}\frac{f(x)}{g(x)}=1 \). Daca \( (x_{nm})_{n\ge m} \) este un sir pentru care \( x_{nm}\neq 0 \) si pentru orice \( n\ge m\ge1 \) si \( \lim_{n\to\infty}x_{nm}=0 \) iar \( \lim_{n\to\infty}\sum_{k=1}^n{g(x_{nk})}=l\in[0,\infty], \) atunci si \( \lim_{n\to\infty}\sum_{k=1}^n{f(x_{nk})}=l \). ''
Cu acestea putem arata ca \( \lim_{n\to\infty}\sum_{k=1}^n\frac{n}{n^2+k+k^2}=\frac{\pi}{4} \)
Last edited by Marius Mainea on Sun Jan 25, 2009 7:52 pm, edited 3 times in total.
Rezolvarea mea pentru aflarea limitei.
Este clar ca \( x_n \geq 0 \).
Din inegalitatea \( HM \leq GM \) pentru numerele \( \frac{1}{3n}, \frac{1}{3k}, \frac{1}{3k^2} \) obtinem:
\( \frac{1}{n+k+k^2} =\frac{3}{3n+3k+3k^2} \leq \sqrt[3]{\frac{1}{27n \cdot k^3}} \leq \frac{1}{\sqrt[3]{n}} \cdot \frac{1}{3k} \).
Deci \( \lim_{n \to \infty}{x_n} \leq \lim_{n \to \infty} \frac{1}{\sqrt[3]{n}} \cdot \sum_{k=1}^n {\frac{1}{3k}} \).
Acum folosind criteriul Cesaro-Stolz :
\( \lim_{n \to \infty} x_n \leq \lim_{n \to \infty}{\frac{\frac{1}{3(n+1)}}{ \sqrt[3]{n+1}-\sqrt[3]{n}}}= \lim_{n \to \infty}{\frac{1}{3(n+1) (\sqrt[3]{n+1}-\sqrt[3]{n})}}= \lim_{n \to \infty} \frac{(n+1)^{\frac{2}{3}} + [(n+1)n]^{\frac{1}{3}}+n^{\frac{2}{3} }}{3(n+1)} \to 0 \)
Deci \( \lim_{n \to \infty} x_n = 0 \).
Am gresit undeva?
Este clar ca \( x_n \geq 0 \).
Din inegalitatea \( HM \leq GM \) pentru numerele \( \frac{1}{3n}, \frac{1}{3k}, \frac{1}{3k^2} \) obtinem:
\( \frac{1}{n+k+k^2} =\frac{3}{3n+3k+3k^2} \leq \sqrt[3]{\frac{1}{27n \cdot k^3}} \leq \frac{1}{\sqrt[3]{n}} \cdot \frac{1}{3k} \).
Deci \( \lim_{n \to \infty}{x_n} \leq \lim_{n \to \infty} \frac{1}{\sqrt[3]{n}} \cdot \sum_{k=1}^n {\frac{1}{3k}} \).
Acum folosind criteriul Cesaro-Stolz :
\( \lim_{n \to \infty} x_n \leq \lim_{n \to \infty}{\frac{\frac{1}{3(n+1)}}{ \sqrt[3]{n+1}-\sqrt[3]{n}}}= \lim_{n \to \infty}{\frac{1}{3(n+1) (\sqrt[3]{n+1}-\sqrt[3]{n})}}= \lim_{n \to \infty} \frac{(n+1)^{\frac{2}{3}} + [(n+1)n]^{\frac{1}{3}}+n^{\frac{2}{3} }}{3(n+1)} \to 0 \)
Deci \( \lim_{n \to \infty} x_n = 0 \).
Am gresit undeva?
- Radu Titiu
- Thales
- Posts: 155
- Joined: Fri Sep 28, 2007 5:05 pm
- Location: Mures \Bucuresti