Sa se rezolve ecuatiile :
\( 1.\ \log_a (a+x)=\log_b(b+x) \), unde \( a>1 \), \( b> 1 \) si \( a\ne b\ . \)
\( 2.\ (a+x)^{\log_ab}-(b+x)^{\log_ba}=b-a \), unde \( a>1 \), \( b>1\ . \)
\( 3.\ \log_{x^2+3x+4}|x+2|=\log_{x^2+5x+9}|x+3|\ . \)
Ecuatii logaritmice
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: Ecuatii logaritmice.
\( 1. \) Presupunem a>b.
\( \log_a (a+x)=\log_b(b+x)=y \) deci
\( x=a^y-a=b^y-b \) sau \( 1=(\frac{b}{a})^y+(a-b)(\frac{1}{a})^y \)
de unde y=1 solutie unica si x=0.
\( 2. \) Notam \( \log_a(a+x)=x_1 \) si \( \log_b(b+x)=x_2 \) si atunci
\( b^{x_1}-a^{x_2}=b-a \) si \( x=a^{x_1}-a=b^{x_2}-b \)
Deci \( b^{x_1}+a^{x_1}=b^{x_2}+a^{x_2} \) si deoarece \( f(x)=b^x+a^x \) e strict crescatoare obtinem \( x_1=x_2 \) si \( \log_a (a+x)=\log_b(b+x) \) si din cazul precedent x=0.
\( \log_a (a+x)=\log_b(b+x)=y \) deci
\( x=a^y-a=b^y-b \) sau \( 1=(\frac{b}{a})^y+(a-b)(\frac{1}{a})^y \)
de unde y=1 solutie unica si x=0.
\( 2. \) Notam \( \log_a(a+x)=x_1 \) si \( \log_b(b+x)=x_2 \) si atunci
\( b^{x_1}-a^{x_2}=b-a \) si \( x=a^{x_1}-a=b^{x_2}-b \)
Deci \( b^{x_1}+a^{x_1}=b^{x_2}+a^{x_2} \) si deoarece \( f(x)=b^x+a^x \) e strict crescatoare obtinem \( x_1=x_2 \) si \( \log_a (a+x)=\log_b(b+x) \) si din cazul precedent x=0.