Search found 82 matches

by Adriana Nistor
Tue Apr 20, 2010 11:21 pm
Forum: Clasa a 11-a
Topic: Internet Olympiad Problema 4 (sir banal)
Replies: 3
Views: 553

Notam cu \( l \) limita sirului.(\( (x_n)_{n\in\mathbb{N}} \) este strict crescator).Din relatia \( x_{n+1}=x_n+e^{-x_n} \) se obtine ca \( l=l+\lim(e^{-x_n}) \Rightarrow \lim (e^{-x_n})=0 \Rightarrow -x_n\rightarrow -\infty\Rightarrow x_n\rightarrow\infty\Rightarrow l=+\infty \)
by Adriana Nistor
Mon Mar 29, 2010 9:12 am
Forum: Clasa a X-a
Topic: Shortlist 12
Replies: 2
Views: 268

Si cum se demonstreaza ca sunt solutii unice?
by Adriana Nistor
Mon Mar 22, 2010 12:10 pm
Forum: Clasa a X-a
Topic: Conditie <=> triunghi echilateral
Replies: 2
Views: 220

Reciproc,daca stim ca \( a,b,c \) sunt afixele varfuriloe unui triunghi echilateral,atunci putem considera \( a=r,b=r\epsilon,c=r\epsilon^2 \),unde \( \epsilon \) e radacina nereala de ordinul 3 a unitatii. \( a+b+c=r(1+\epsilon+\epsilon^2)=0 \).De aici,prin calcul,reciproca se demonstreaza usor.
by Adriana Nistor
Mon Mar 22, 2010 12:06 pm
Forum: Clasa a X-a
Topic: Conditie <=> triunghi echilateral
Replies: 2
Views: 220

|ka+b+c|=|a+kb+c|=|a+b+kc| <=> |(a+b+c)+(k-1)a|^2=|(a+b+c)+(k-1)b|^2=|(a+b+c)+(k-1)c|^2 (1) Sa notam a+b+c=s Relatia (1) devine: |s+(k-1)a|^2=|s+(k-1)b|^2=|s+(k-1)c|^2<=>|s|^2+|k-1|^2|a|^2+(k-1)\overline{s}a+(k-1)s\overline{a}=|s|^2+|k-1|^2|b|^2+(k-1)\overline{s}b+(k-1)s\overline{b}=|s|^2+|k-1|^2|c...
by Adriana Nistor
Fri Mar 12, 2010 9:29 pm
Forum: Chat de voie
Topic: OJM 2010
Replies: 10
Views: 996

Mult succes tuturor! :P
by Adriana Nistor
Sat Mar 06, 2010 6:18 pm
Forum: Clasa a 9-a
Topic: Interesant (geometrie) ...
Replies: 1
Views: 180

\frac{BD}{CD}=\frac{c}{b}\Rightarrow\frac{BD}{a}=\frac{c}{b+c}\Rightarrow BD=\frac{ac}{b+c} ; \frac{AI}{ID}=\frac{AB}{BD}\Rightarrow\frac{AI}{AD}=\frac{b+c}{a+b+c} \Rightarrow{AI}=\frac{bc(b+c-a)}{a+b+c} .De aici,tinand cont ca a^2=b^2+c^2 se arata prin calcul ca IA^2=(a-b)(a-c) Analog BI^2=\frac{a...
by Adriana Nistor
Sun Feb 21, 2010 6:37 pm
Forum: Clasa a 11-a
Topic: Admitere, Informatica, Univ. "A.I.Cuza" Iasi, 1997
Replies: 3
Views: 255

\lim_{n\rightarrow\infty}[a\ln(3+n)+b\ln(n+2)+c\ln(n+1)]=\lim_{n\rightarrow\infty}[a\ln(1+\frac{3}{n})+b\ln(1+\frac{2}{n})+c\ln(1+\frac{1}{n})+a\ln{n}+b\ln{n}+c\ln{n}]=\lim_{n\rightarrow\infty}[a\frac{3}{n}+b\frac{2}{n}+c\frac{1}{n}+(a+b+c)\ln{n}]=\lim_{n\rightarrow\infty}[(a+b+c)\ln{n}] \lim_{n\ri...
by Adriana Nistor
Sun Feb 14, 2010 7:49 pm
Forum: Clasa a X-a
Topic: Etapa locala, Arges 2010
Replies: 6
Views: 501

Da,asa e
by Adriana Nistor
Sun Feb 14, 2010 7:39 pm
Forum: Clasa a X-a
Topic: Etapa locala, Arges 2010
Replies: 6
Views: 501

de ce?
by Adriana Nistor
Sun Feb 14, 2010 7:36 pm
Forum: Clasa a X-a
Topic: Etapa locala, Arges 2010
Replies: 6
Views: 501

SUBIECTUL I

\( 16^x+2^{\frac{1}{x}}\ge4 \)(AM-GM)
\( 16^y+2^{\frac{1}{y}}\ge4 \)(AM-GM)
\( \Rightarrow 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}\ge8 \)
dar \( 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}=8 \)\( \Rightarrow 4x=\frac{1}{x} \) si \( 4y=\frac{1}{y} \),deci \( x,y\in\{\frac{-1}{2},\frac{1}{2}\} \)
by Adriana Nistor
Sat Feb 13, 2010 9:38 pm
Forum: Clasa a 9-a
Topic: Inegalitati simple pentru un eventual test la clasa.
Replies: 5
Views: 294

Pentru putin!
by Adriana Nistor
Sat Feb 13, 2010 2:34 pm
Forum: Clasa a 9-a
Topic: Inegalitati simple pentru un eventual test la clasa.
Replies: 5
Views: 294

Buna ziua,domnule profesor! Din cate imi amintesc eu la nivelul clasei relatiile pentru bisectoare si mediana apar abia in clasa a IX-a.Pentru olimpiada insa,de obicei,profesorii le prezinta si la clasele VII-VIII.
by Adriana Nistor
Thu Feb 11, 2010 6:54 pm
Forum: Clasa a 9-a
Topic: Inegalitati simple pentru un eventual test la clasa.
Replies: 5
Views: 294

\( m_{a}^2=\frac{2(b^2+c^2)-a^2}{4}\ge\frac{(b+c)^2-a^2}{4}=\frac{(a+b+c)(b+c-a)}{4}=s(s-a) \)
\( l_{a}^2=\frac{4bc}{(b+c)^2}s(s-a)\le s(s-a) \)
by Adriana Nistor
Sat Feb 06, 2010 7:49 pm
Forum: Alte concursuri
Topic: TMMATE
Replies: 1
Views: 482

TMMATE

Stie cineva daca se mai tine concursul "Tmmate"? Anul trecut au organizat chiar o faza internationala,dar anul acesta nu mai anunta nici concursul interjudetean...
by Adriana Nistor
Thu Jan 28, 2010 6:24 pm
Forum: Clasa a X-a
Topic: Numere complexe a, b, c, d de acelasi modul cu a+b+c=d
Replies: 3
Views: 762

Solutia 3: (a-d)(b-d)(c-d)=(ab-ad-bd+d^2)(c-d)=abc-acd-bcd+cd^2-abd+ad^2+bd^2-d^3= abc-d(ab+bc+ca)+d^2(a+b+c)-d^3=abc-d(ab+bc+ca)+d^3-d^3=abc-d(ab+bc+ca) (1) Fie r\in\mathbb{R} astfel incat |a|=|b|=c|=|d|=r . Din a+b+c=d\Right \frac{r^2}{a}+\frac{r^2}{b}+\frac{r^2}{c}=\frac{r^2}{d}\Right \frac{1}{a...
by Adriana Nistor
Wed Jan 27, 2010 7:54 pm
Forum: Clasa a X-a
Topic: Termeni ai unui sir in progresie aritmetica
Replies: 1
Views: 151

Termeni ai unui sir in progresie aritmetica

Se considera sirul \( (x_{n})_{n\in\mathbb{N}} \) definit prin \( x_1=3 \) si \( x_{n+1}=\[\sqrt{2}x_n\] \) pentru \( n\ge1 \). Sa se determine toate valorile lui \( n \) pentru care \( x_n,\ x_{n+1},\ x_{n+2} \) sunt in progresie aritmetica.
by Adriana Nistor
Wed Jan 27, 2010 7:49 pm
Forum: Clasa a X-a
Topic: Reuniune de progresii aritmetice disjuncte
Replies: 0
Views: 99

Reuniune de progresii aritmetice disjuncte

Sa se arate ca daca \( \mathbb{N}* \) se scrie ca reuniune de \( n \) progresii aritmetice disjuncte \( P_{i} \), atunci \( \sum_{i=1}^{n}\frac{a_{i}}{r_{i}}=\frac{n+1}{2} \),unde \( a_{i} \) este primul termen, iar \( r_{i} \) ratia progresiei \( P_{i} \).

Go to advanced search