Search found 82 matches
- Tue Apr 20, 2010 11:21 pm
- Forum: Clasa a 11-a
- Topic: Internet Olympiad Problema 4 (sir banal)
- Replies: 3
- Views: 553
- Mon Mar 29, 2010 9:12 am
- Forum: Clasa a X-a
- Topic: Shortlist 12
- Replies: 2
- Views: 268
- Mon Mar 22, 2010 12:10 pm
- Forum: Clasa a X-a
- Topic: Conditie <=> triunghi echilateral
- Replies: 2
- Views: 220
- Mon Mar 22, 2010 12:06 pm
- Forum: Clasa a X-a
- Topic: Conditie <=> triunghi echilateral
- Replies: 2
- Views: 220
|ka+b+c|=|a+kb+c|=|a+b+kc| <=> |(a+b+c)+(k-1)a|^2=|(a+b+c)+(k-1)b|^2=|(a+b+c)+(k-1)c|^2 (1) Sa notam a+b+c=s Relatia (1) devine: |s+(k-1)a|^2=|s+(k-1)b|^2=|s+(k-1)c|^2<=>|s|^2+|k-1|^2|a|^2+(k-1)\overline{s}a+(k-1)s\overline{a}=|s|^2+|k-1|^2|b|^2+(k-1)\overline{s}b+(k-1)s\overline{b}=|s|^2+|k-1|^2|c...
- Fri Mar 12, 2010 9:29 pm
- Forum: Chat de voie
- Topic: OJM 2010
- Replies: 10
- Views: 996
- Sat Mar 06, 2010 6:18 pm
- Forum: Clasa a 9-a
- Topic: Interesant (geometrie) ...
- Replies: 1
- Views: 180
\frac{BD}{CD}=\frac{c}{b}\Rightarrow\frac{BD}{a}=\frac{c}{b+c}\Rightarrow BD=\frac{ac}{b+c} ; \frac{AI}{ID}=\frac{AB}{BD}\Rightarrow\frac{AI}{AD}=\frac{b+c}{a+b+c} \Rightarrow{AI}=\frac{bc(b+c-a)}{a+b+c} .De aici,tinand cont ca a^2=b^2+c^2 se arata prin calcul ca IA^2=(a-b)(a-c) Analog BI^2=\frac{a...
- Sun Feb 21, 2010 6:37 pm
- Forum: Clasa a 11-a
- Topic: Admitere, Informatica, Univ. "A.I.Cuza" Iasi, 1997
- Replies: 3
- Views: 255
\lim_{n\rightarrow\infty}[a\ln(3+n)+b\ln(n+2)+c\ln(n+1)]=\lim_{n\rightarrow\infty}[a\ln(1+\frac{3}{n})+b\ln(1+\frac{2}{n})+c\ln(1+\frac{1}{n})+a\ln{n}+b\ln{n}+c\ln{n}]=\lim_{n\rightarrow\infty}[a\frac{3}{n}+b\frac{2}{n}+c\frac{1}{n}+(a+b+c)\ln{n}]=\lim_{n\rightarrow\infty}[(a+b+c)\ln{n}] \lim_{n\ri...
- Sun Feb 14, 2010 7:49 pm
- Forum: Clasa a X-a
- Topic: Etapa locala, Arges 2010
- Replies: 6
- Views: 501
- Sun Feb 14, 2010 7:39 pm
- Forum: Clasa a X-a
- Topic: Etapa locala, Arges 2010
- Replies: 6
- Views: 501
- Sun Feb 14, 2010 7:36 pm
- Forum: Clasa a X-a
- Topic: Etapa locala, Arges 2010
- Replies: 6
- Views: 501
SUBIECTUL I
\( 16^x+2^{\frac{1}{x}}\ge4 \)(AM-GM)
\( 16^y+2^{\frac{1}{y}}\ge4 \)(AM-GM)
\( \Rightarrow 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}\ge8 \)
dar \( 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}=8 \)\( \Rightarrow 4x=\frac{1}{x} \) si \( 4y=\frac{1}{y} \),deci \( x,y\in\{\frac{-1}{2},\frac{1}{2}\} \)
\( 16^x+2^{\frac{1}{x}}\ge4 \)(AM-GM)
\( 16^y+2^{\frac{1}{y}}\ge4 \)(AM-GM)
\( \Rightarrow 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}\ge8 \)
dar \( 16^x+16^y+2^{\frac{1}{x}}+2^{\frac{1}{y}}=8 \)\( \Rightarrow 4x=\frac{1}{x} \) si \( 4y=\frac{1}{y} \),deci \( x,y\in\{\frac{-1}{2},\frac{1}{2}\} \)
- Sat Feb 13, 2010 9:38 pm
- Forum: Clasa a 9-a
- Topic: Inegalitati simple pentru un eventual test la clasa.
- Replies: 5
- Views: 294
- Sat Feb 13, 2010 2:34 pm
- Forum: Clasa a 9-a
- Topic: Inegalitati simple pentru un eventual test la clasa.
- Replies: 5
- Views: 294
- Thu Feb 11, 2010 6:54 pm
- Forum: Clasa a 9-a
- Topic: Inegalitati simple pentru un eventual test la clasa.
- Replies: 5
- Views: 294
- Sat Feb 06, 2010 7:49 pm
- Forum: Alte concursuri
- Topic: TMMATE
- Replies: 1
- Views: 482
TMMATE
Stie cineva daca se mai tine concursul "Tmmate"? Anul trecut au organizat chiar o faza internationala,dar anul acesta nu mai anunta nici concursul interjudetean...
- Thu Jan 28, 2010 6:24 pm
- Forum: Clasa a X-a
- Topic: Numere complexe a, b, c, d de acelasi modul cu a+b+c=d
- Replies: 3
- Views: 762
Solutia 3: (a-d)(b-d)(c-d)=(ab-ad-bd+d^2)(c-d)=abc-acd-bcd+cd^2-abd+ad^2+bd^2-d^3= abc-d(ab+bc+ca)+d^2(a+b+c)-d^3=abc-d(ab+bc+ca)+d^3-d^3=abc-d(ab+bc+ca) (1) Fie r\in\mathbb{R} astfel incat |a|=|b|=c|=|d|=r . Din a+b+c=d\Right \frac{r^2}{a}+\frac{r^2}{b}+\frac{r^2}{c}=\frac{r^2}{d}\Right \frac{1}{a...
- Wed Jan 27, 2010 7:54 pm
- Forum: Clasa a X-a
- Topic: Termeni ai unui sir in progresie aritmetica
- Replies: 1
- Views: 151
Termeni ai unui sir in progresie aritmetica
Se considera sirul \( (x_{n})_{n\in\mathbb{N}} \) definit prin \( x_1=3 \) si \( x_{n+1}=\[\sqrt{2}x_n\] \) pentru \( n\ge1 \). Sa se determine toate valorile lui \( n \) pentru care \( x_n,\ x_{n+1},\ x_{n+2} \) sunt in progresie aritmetica.
- Wed Jan 27, 2010 7:49 pm
- Forum: Clasa a X-a
- Topic: Reuniune de progresii aritmetice disjuncte
- Replies: 0
- Views: 99
Reuniune de progresii aritmetice disjuncte
Sa se arate ca daca \( \mathbb{N}* \) se scrie ca reuniune de \( n \) progresii aritmetice disjuncte \( P_{i} \), atunci \( \sum_{i=1}^{n}\frac{a_{i}}{r_{i}}=\frac{n+1}{2} \),unde \( a_{i} \) este primul termen, iar \( r_{i} \) ratia progresiei \( P_{i} \).