Sirul {n\sqrt2}+{n\sqrt3} este divergent

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Sirul {n\sqrt2}+{n\sqrt3} este divergent

Post by Cezar Lupu »

Sa se arate ca sirul \( a_{n}=\{n\sqrt{2}\}+\{n\sqrt{3\} \) este divergent, unde \( \{x\} \) reprezinta partea fractionara a numarului real \( x \).

Alin Galatan, Cezar Lupu, lista scurta ONM 2007
Last edited by Cezar Lupu on Thu Feb 28, 2008 4:28 pm, edited 3 times in total.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Deoarece \( \{a\}+\{b\}-\{a+b\} \in \{0,1\} \) pentru a, b reale, rezulta ca

\( \{n\sqrt{2}\}+\{n\sqrt{3}\}=\{n(\sqrt{2}+\sqrt{3})\}+c \) unde c e ori 0 ori 1.

Deoarece sirul \( \{n(\sqrt{2}+\sqrt{3})\} \) este dens in intervalul [0,1] (Teorema lui Kronecker) rezulta ca e divergent. Acea constanta "c" nu afecteaza cu nimic rezultatul.
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Analiza matematica”