Functia sin x^2 are primitive marginite pe R

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Vlad Matei
Pitagora
Posts: 58
Joined: Wed Sep 26, 2007 6:44 pm
Location: Bucuresti

Functia sin x^2 are primitive marginite pe R

Post by Vlad Matei »

Fie functia \( f:\mathbb{R}\rightarrow \mathbb{R} \), \( f(x)=\sin{ x^2} \).
a) Sa se arate ca \( f \) admite primitive marginite pe \( \mathbb{R} \).
b) Fie \( F \) o primitiva a lui \( f \) cu proprietatea ca \( F(0)=0 \). Definim sirul \( (a_{n})_{n\geq 0} \) prin \( a_{0} \in (0;1) \) si \( a_{n+1}=a_{n}-F(a_{n}) \) pentru \( n\geq 0 \).
Sa se calculeze \( \displaystyle \lim_{n\rightarrow \infty}\displaystyle \sqrt {n} a_{n} \).

Florian Dumitrel, "Nicolae Coculescu" 2007
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

a) Nu cumva este adevarat chiar mai general, ca daca o functie \( f:\mathbb{R}\rightarrow\mathbb{R} \) admite primitive marginite, atunci si \( g:\mathbb{R}\rightarrow\mathbb{R} \), \( g(x)=f(x^2), \forall x\in\mathbb{R} \), admite primitive marginite?
Post Reply

Return to “Analiza matematica”