Matrice cu elemente intregi si determinant nenul
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Matrice cu elemente intregi si determinant nenul
Fie \( n\in\mathbb{N}^{*} \) si \( X, Y\in M_{n}(\mathbb{Z}) \), \( \alpha, \beta\in\mathbb{Z} \) astfel incat \( \det X,\ \det Y \) si \( \alpha +\beta \) sunt numere impare. Sa se demonstreze ca \( \det( \alpha X+\beta Y)\neq 0 \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)