Stelele Matematicii Problema 1

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Vlad Matei
Pitagora
Posts: 58
Joined: Wed Sep 26, 2007 6:44 pm
Location: Bucuresti

Stelele Matematicii Problema 1

Post by Vlad Matei »

Fie \( x_i,y_i>0 \),\( i=\overline{1,n} \) cu \( \displaystyle \sum_{i=1}^{n} x_i\geq \sum_{i=1}^{n} x_iy_i \). Demonstrati ca pentru orice \( p\in\mathbb{N} \) avem \( \displaystyle \sum_{i=1}^{n}\frac{x_i}{y_i^p}\geq \sum_{i=1}^{n} x_i \).

Cezar Lupu

Observatie: Inegalitatea are loc pentru orice \( p\geq 0 \).
Show must go on!
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Reducere la absurd si inegalitatea generalizata a mediilor.

Adica presupunand prin absurd contrariul concluziei, prin adunare cu inegalitatea din ipoteza inmultita cu p

\( (p+1)\sum x_i >\sum x_i(py_i+\frac{1}{y_i^p})\ge\sum x_i(p+1) \) , contradictie.
Post Reply

Return to “Inegalitati”