Relatii matriceale echivalente

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
opincariumihai
Thales
Posts: 134
Joined: Sat May 09, 2009 7:45 pm
Location: BRAD

Relatii matriceale echivalente

Post by opincariumihai »

Daca \( A,B\in M_2(\mathbb{C}) \) si \( \det A=\det B=1 \) sa se demonstreze echivalenta :
\( (AB-BA)^2=O_2 \)\( \Leftrightarrow A^2+B^2=A^{-1}BAB+B^{-1}ABA. \)

Mihai Opincariu
Last edited by opincariumihai on Thu Aug 06, 2009 6:20 pm, edited 3 times in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Folosind Hamilton-Cayley,

\( A^2-\tr(A)A+I_2=O_2 \) si \( B^2-\tr(B)B+I_2=O_2 \),

de unde

\( A^{-1}=\tr(A)I_2-A \) si \( B^{-1}=\tr(B)I_2-B \)

Atunci \( (AB-BA)^2=O_2 \) \( \Longleftrightarrow \) \( (AB)^2+(BA)^2-AB^2A-BA^2B=O_2 \) \( \Longleftrightarrow \) \( (AB)^2+(BA)^2-A[\tr(B)B-I_2]A-B[\tr(A)A-I_2]B=O_2 \) (*)

Deasemenea a doua relatie
\( A^2+B^2=A^{-1}BAB+B^{-1}ABA \)
este echivalenta cu
\( A^2+B^2=[\tr(A)I_2-A]BAB+[\tr(B)I_2-B]ABA \) (**)

Relatiile (*) si (**) sunt echivalente si problema este rezolvata.
Post Reply

Return to “Algebra”