Un determinant mai special
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
Un determinant mai special
Fie X matricea de ordin n cu elementele: n-1 pe diagonala principala si -1 in rest, iar A o matrice oarecare de ordin m x n (m, n naturale nenule). Sa se demonstreze inegalitatea \( \det (AXA^t) \geq 0 \).
1. Se determina forma matricei AXB (m x m).
2. Se arata pentru m = 1, 2, 3 etc. ca inegalitatea este adevarata (determinantul rez. este pozitiv).
3. Inductie dupa m (trecerea de la m la m+1 se face scriind elementele de pe ultima coloana si linie sub forma ax+b, si se rezolva inec. de grad 2 in x, etc.) => se reduce la a se dem. o identitate cu determinanti simetrici.
2. Se arata pentru m = 1, 2, 3 etc. ca inegalitatea este adevarata (determinantul rez. este pozitiv).
3. Inductie dupa m (trecerea de la m la m+1 se face scriind elementele de pe ultima coloana si linie sub forma ax+b, si se rezolva inec. de grad 2 in x, etc.) => se reduce la a se dem. o identitate cu determinanti simetrici.
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Haideti sa vedem o solutie lipsita de calcule.
Daca C este matrice complexa de ordin mxn, atunci \( \det(CC^h)\geq0 \) (pentru demonstratie vezi http://www.mateforum.ro/viewtopic.php?p=12918#12918).
Acum alegem \( C=AX^h \). Tinand cont ca X este hermitiana (chiar simetrica) obtin \( \det(AXXA^h)\geq0 \). Dar \( XX=X^2=(nI-U)^2 \) unde U matricea cu toate elementele 1 si cum \( U^2=nU \) se obtine \( X^2=nX. \) Avem deci \( \det(AnXA^h)\geq0 \), adica \( n^m\det(AXA^h)\geq0 \) si astfel am obtinut ca inegalitatea functioneaza si pt. A complexa. Daca A reala \( A^h=A^t \).
Observatie: \( A^h=(\overline{A})^t. \)
Daca C este matrice complexa de ordin mxn, atunci \( \det(CC^h)\geq0 \) (pentru demonstratie vezi http://www.mateforum.ro/viewtopic.php?p=12918#12918).
Acum alegem \( C=AX^h \). Tinand cont ca X este hermitiana (chiar simetrica) obtin \( \det(AXXA^h)\geq0 \). Dar \( XX=X^2=(nI-U)^2 \) unde U matricea cu toate elementele 1 si cum \( U^2=nU \) se obtine \( X^2=nX. \) Avem deci \( \det(AnXA^h)\geq0 \), adica \( n^m\det(AXA^h)\geq0 \) si astfel am obtinut ca inegalitatea functioneaza si pt. A complexa. Daca A reala \( A^h=A^t \).
Observatie: \( A^h=(\overline{A})^t. \)
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Problema este un caz particular al problemei de aici. Matricea \( X \) poate fi scrisa sub forma \( X=BB^t \) pentru ca e simetrica si pozitiv definita.
http://mathworld.wolfram.com/CholeskyDecomposition.html
http://mathworld.wolfram.com/CholeskyDecomposition.html
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
\( B= \left[ \begin{array}{cccc} \sqrt {3}&0&0&0\\-1/3\sqrt {3}&2/3\,\sqrt {6}&0&0\\-1/3\,\sqrt {3}&-1/3\sqrt {6}&\sqrt {2}&0\\-1/3\,\sqrt {3}&-1/3\sqrt {
6}&-\sqrt {2}&0\end{array} \right] \)
Daca o sa calculezi \( B\cdot B^t \) obtii exact matricea ta. Nu e chiar pozitiv definita ca are determinantul 0, dar se poate descompune asa.
6}&-\sqrt {2}&0\end{array} \right] \)
Daca o sa calculezi \( B\cdot B^t \) obtii exact matricea ta. Nu e chiar pozitiv definita ca are determinantul 0, dar se poate descompune asa.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD