Fie \( f:[0,1] \rightarrow R \) o functie integrabila cu proprietatea ca pentru orice \( x \in [0,1) \) avem:
\( \lim_{n\to\infty}{n \cdot \int_{x}^{x+\frac{1}{n}}{f(t)}dt}=0. \)
Demonstrati ca pentru orice \( a,b \in (0,1) \) avem:
\( \int_{a}^{b}{f(t)}dt=0. \)
Cristinel Mortici, SHORTLIST ONM 2008
Functie constanta
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- bogdanl_yex
- Pitagora
- Posts: 91
- Joined: Thu Jan 31, 2008 9:58 pm
- Location: Bucuresti
Functie constanta
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
Deoarece \( f \) are o multime numarabila de discontinuitati, \( \forall x \in (0,1) \) exista \( n \in N* \) astfel incat \( f \) sa fie continua pe \( (x,x+ \frac {1}{n}) \).
Fie \( F(x) = \int_{0}^{x}{f(t)}dt=0 \). Atunci, din \( \lim_{n\to\infty}{n \cdot \int_{x}^{x+\frac{1}{n}}{f(t)}dt}=0 \) avem:
\( \lim_{n\to\infty} \frac {F(x+ \frac {1}{n}) - F(x)}{(x+ \frac {1}{n}) - x} = 0 \) \( \Rightarrow F^\prime (x) = 0 \Rightarrow f(x)=0 \).
Asadar \( f(x)=0 \forall x\in [0,1]-M \), unde \( M \) este cel mult numarabila \( \Rightarrow \forall a,b \in (0,1) \) avem \( \int_{a}^{b}{f(t)}dt=0 \).
Fie \( F(x) = \int_{0}^{x}{f(t)}dt=0 \). Atunci, din \( \lim_{n\to\infty}{n \cdot \int_{x}^{x+\frac{1}{n}}{f(t)}dt}=0 \) avem:
\( \lim_{n\to\infty} \frac {F(x+ \frac {1}{n}) - F(x)}{(x+ \frac {1}{n}) - x} = 0 \) \( \Rightarrow F^\prime (x) = 0 \Rightarrow f(x)=0 \).
Asadar \( f(x)=0 \forall x\in [0,1]-M \), unde \( M \) este cel mult numarabila \( \Rightarrow \forall a,b \in (0,1) \) avem \( \int_{a}^{b}{f(t)}dt=0 \).
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
Pai \( f \) are Lebesgue...bae wrote:Cum asa? Si chiar daca ar fi, concluzia aia cu continuitatea pe interval e tot hazardata, doar stim cu totii ca \( \mathbb{Q} \) este numarabila si densa in acelasi timp.Marius Dragoi wrote:Deoarece \( f \) are o multime numarabila de discontinuitati
Last edited by Marius Dragoi on Mon Feb 23, 2009 6:28 pm, edited 1 time in total.
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers
- Dragos Fratila
- Newton
- Posts: 313
- Joined: Thu Oct 04, 2007 10:04 pm
Ce ai vrea sa folosesti pentru a obtine aceeasi concluzie cred ca este Lebesgue differentiation theorem.Marius Dragoi wrote:Deoarece \( f \) are o multime numarabila de discontinuitati, \( \forall x \in (0,1) \) exista \( n \in N* \) astfel incat \( f \) sa fie continua pe \( (x,x+ \frac {1}{n}) \).
Fie \( F(x) = \int_{0}^{x}{f(t)}dt=0 \). Atunci, din \( \lim_{n\to\infty}{n \cdot \int_{x}^{x+\frac{1}{n}}{f(t)}dt}=0 \) avem:
\( \lim_{n\to\infty} \frac {F(x+ \frac {1}{n}) - F(x)}{(x+ \frac {1}{n}) - x} = 0 \) \( \Rightarrow F^\prime (x) = 0 \Rightarrow f(x)=0 \).
"Greu la deal cu boii mici..."