Page 1 of 1

Matrice de ordin impar

Posted: Sat Jan 24, 2009 4:36 pm
by Andrei Velicu
i) Fie \( A, B \in M_{2n+1}(\mathbb{C}) \) cu \( A^2-B^2=I_{2n+1} \). Aratati ca \( \det(AB-BA)=0 \).
ii) Gasiti \( A, B \in M_2(\mathbb{C}) \) cu \( A^2-B^2=I_2 \), dar \( \det(AB-BA)\neq 0 \).

GMB, subiectul 2, OLM 2009 Constanta

Re: Matrice de ordin impar

Posted: Sun Jan 25, 2009 1:24 am
by Marius Mainea
(i) Folosim relatia \( \det(XY-I_k)=\det(YX-I_k) \) pentru orice matrice de ordin k oarecare.

Asadar \( \det(AB-BA)=\det[(A-B)(A+B)-I_n]=\det[(A+B)(A-B)-I_n]=\det(BA-AB)=(-1)^{2n+1}\det(AB-BA) \) si de aici concluzia.