Matrice de ordin impar

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
Andrei Velicu
Euclid
Posts: 27
Joined: Wed Oct 17, 2007 9:20 am
Location: Constanta

Matrice de ordin impar

Post by Andrei Velicu »

i) Fie \( A, B \in M_{2n+1}(\mathbb{C}) \) cu \( A^2-B^2=I_{2n+1} \). Aratati ca \( \det(AB-BA)=0 \).
ii) Gasiti \( A, B \in M_2(\mathbb{C}) \) cu \( A^2-B^2=I_2 \), dar \( \det(AB-BA)\neq 0 \).

GMB, subiectul 2, OLM 2009 Constanta
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: Matrice de ordin impar

Post by Marius Mainea »

(i) Folosim relatia \( \det(XY-I_k)=\det(YX-I_k) \) pentru orice matrice de ordin k oarecare.

Asadar \( \det(AB-BA)=\det[(A-B)(A+B)-I_n]=\det[(A+B)(A-B)-I_n]=\det(BA-AB)=(-1)^{2n+1}\det(AB-BA) \) si de aici concluzia.
Post Reply

Return to “Algebra”