Limita de sir recurent

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
turcas
Pitagora
Posts: 83
Joined: Fri Sep 28, 2007 1:48 pm
Location: Cluj-Napoca
Contact:

Limita de sir recurent

Post by turcas »

Fie \( (a_n)_{n \geq 0} \) dat astfel: \( a_0=1 \), \( a_{n+1}=\sqrt[4]{14+a_n}, n \in \mathbb{N} \). Sa se calculeze \( \lim_{n \to \infty}{a_n} \).

Subiectul IV, Etapa locala, 24 Ianuarie 2009, clasa a XI-a
User avatar
Andrei Ciupan
Euclid
Posts: 19
Joined: Thu Sep 27, 2007 8:34 pm

Post by Andrei Ciupan »

Mai intai demonstram prin inductie triviala ca \( a_n<2 \), de unde avem \( \sqrt[4]{a_n+14}>a_n \), deci sirul \( (a_n) \) este crescator, deci are limita finita \( l \) (caci \( (a_n) \) este marginit), si avem \( l^4=l+14 \), de unde \( l=2 \).
Andrei Ciupan.
Post Reply

Return to “Analiza matematica”