Cristian Calude, proba pe echipe, R.III, P.I

Post Reply
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Cristian Calude, proba pe echipe, R.III, P.I

Post by Laurian Filip »

Sa se calculeze suma cifrelor numarului

\( N=9+99+999+...+\underbrace{999...9}_{999 cifre}. \)
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

\( N=(10-1)+(10^2)-1+(10^3-1)+....+(10^{999}-1)=10+10^2+10^3+....+10^{999}-999=10+10^2+10^4+....+10^{999}+10^3+1-10^3=10^{999}+....+10^4+10^2+10+1=111...10111 (1000 cifre)\Rightarrow \) Suma cifrelor numarului \( N \) este \( 999 \).
spx2
Euclid
Posts: 31
Joined: Thu Apr 10, 2008 11:01 am

Post by spx2 »

\( N=(10-1)+(100-1)+...+(10^{999} - 1)=\underbrace{11...1}_{999 ori}0 - 999 =\underbrace{11...1}_{996 ori}0000 + 1110 - 999 = \underbrace{11...1}_{996 ori}0000 + 111 = \underbrace{11...1}_{996 ori}0111 \)
deci suma e 999
Post Reply

Return to “Clasa a 7-a”