Marginire si subaditivitate

Moderators: Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Marginire si subaditivitate

Post by Filip Chindea »

Fie \( c > 2 \) si un sir de numere nenegative (a_n)_{n \ge 1}[/tex] astfel ca

\( a_{m + n} \le 2(a_m + a_n) \), \( \forall m, n \in \mathbb{N}^{\ast} \),

iar \( a_{2^k} \le 1/(k+1)^c \), \( \forall k \ge 0 \).

Sa se arate ca sirul \( (a_n) \) este marginit.

[ IMO Shortlist 2007, A5 ]
Life is complex: it has real and imaginary components.
Post Reply

Return to “Algebra”