Intrebare

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Intrebare

Post by Filip Chindea »

Demonstrati elementar teorema EGZ (intr-un multiset de \( 2n - 1 \) intregi avem \( n \) cu suma multiplu de \( n \)), pentru \( n \in \mathbb{N}^{\ast} \) prim, fara a utiliza urmatoarea lema:

Fie \( p \) prim, \( r \in \overline{1, p - 1} \) iar \( b_k \in \overline{1, p - 1} \), \( \forall k \in \overline{1, r} \). Atunci printre sumele de \( b_k \)-uri gasim \( r + 1 \) distincte modulo \( p \).

Deduceti rezultatul pentru orice \( n \in \mathbb{N}^{\ast} \).
Last edited by Filip Chindea on Fri May 30, 2008 8:36 pm, edited 1 time in total.
Life is complex: it has real and imaginary components.
bae
Bernoulli
Posts: 234
Joined: Tue Oct 02, 2007 10:39 pm

Post by bae »

***
Last edited by bae on Sat Feb 13, 2010 2:07 pm, edited 1 time in total.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Pentru simplul motiv ca este improbabil ca asa ceva va fi redescoperit intr-un concurs. Doream o solutie "scurta" si naturala, la nivel de cls. a 9-a, sa zicem.

PS. Rezolvarea elementara la care faceti referire se gaseste in Busneag - Aritmetica si Teoria Numerelor (Craiova '93), culegerea de exercitii rezolvate. Mi se pare ca este si pe net si la Editura GIL.
Life is complex: it has real and imaginary components.
Post Reply

Return to “Teoria Numerelor”