Concursul 'Marian Tarina' 2008 pb 1

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Concursul 'Marian Tarina' 2008 pb 1

Post by Radu Titiu »

Fie \( A,B,C \in \mathcal{M}_n(\mathbb{C}) \) care comuta doua cate doua si verifica \( A^3+B^3+C^3=A+B+C=O_n \)

Sa se arate ca \( ABC=O_n \)
A mathematician is a machine for turning coffee into theorems.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Pai daca comuta, verifica \( A^3+B^3+C^3-3ABC=(A+B+C)(A^2+B^2+C^2-AB-BC-CA) \). Din enunt \( ABC=0 \).



...banalitate... :|
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Post by Radu Titiu »

Dap. E trist sa vezi o asa 'problema' la un concurs. Fie ea si problema de incurajare, dar mi se pare totusi ca nu prea se potriveste.
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Algebra”