Page 1 of 1

O problema cu matrice

Posted: Fri Apr 11, 2008 11:42 am
by bogdanl_yex
Fie \( A,B \in M_{n}(C) \) si \( \omega \) o radacina de ordinul \( p \) a unitatii. Aratati ca pentru orice matrice cu proprietatea ca \( AB= \omega BA \) are loc relatia \( (A+B)^{p}=A^{p}+B^{p} \).

Posted: Sat Jun 14, 2008 10:50 pm
by Marius Mainea
Se demonstreaza prin inductie dupa n relatia: \( (A+B)^n=A^n+(1+\omega+\omega^2+...+\omega^{n-1})\sum_{k=1}^{n-1}C_n^kA^{n-k}B^k+B^n \)